
IJCST Vol. 3, Issue 3, July - Sept 2012

w w w . i j c s t . c o m International Journal of Computer Science And Technology   665

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

Online Incursion Aware Aggregation With Generative Facts
Issue Modeling

1Bejjam Naresh, 2R. Naveen
1,2Dept. of CSE, Swarna Bharathi Institute of Technology and Science, Khammam, AP, India

Abstract
Meta-alerts is the basis for reporting to security experts or for
communication within a distributed intrusion detection system. .
With three benchmark data sets, we demonstrate that it is possible
to achieve reduction rates of up to 99.96 percent while the number
of missing meta-alerts is extremely low. In addition, meta-alerts
are generated with a delay of typically only a few seconds after
observing the first alert belonging to a new attack instance. Meta-
alerts can be generated for the clusters that contain all the relevant
information whereas the amount of data (i.e., alerts) can be reduced
substantially. Intrusion detection can be used to identify the types
of hackers attempting to tress pass into the system, thus we use
the concept of alerts to cluster the types of attacks and the further
counter measures, by using the concept of firewalls. . In addition,
even low rates of false alerts could easily result in a high total
number of false alerts if thousands of network packets or log file
entries are inspected

Keywords
Meta-alerts, Intruding Alerts, Intrusion Detection, Hacking

I. Introduction
Intrusion Detection Systems (IDS) are besides other protective
measures such as virtual private networks, authentication
mechanisms, or encryption techniques very important to guarantee
information security. At present, most IDS are quite reliable in
detecting suspicious actions by evaluating TCP/IP connections
or log files, for instance. Once AN ID finds a suspicious action,
it immediately creates an alert which contains information about
the source, target, and estimated type of the attack. IDS usually
focus on detecting attack types, but not on distinguishing between
different attack instances. In addition, even low rates of false alerts
could easily result in a high total number of false alerts if thousands
of network packets or log file entries are inspected.
This problem is not new, but current solutions are typically based
on a quite simple sorting of alerts, e.g., according to their source,
destination, and attack type. Under real conditions such as the
presence of classification errors of the low-level IDS (e.g., false
alerts), uncertainty with respect to the source of the attack due
to spoofed IP addresses, or wrongly adjusted time windows, for
instance, such an approach fails quite often. Our approach has the
following distinct properties:

It is a generative modeling approach [3] Using probabilistic •	
methods. Assuming that attack instances can be regarded as
random processes “producing” alerts, we aim at modeling
these processes using approximate maximum likelihood
parameter estimation techniques. Thus, the beginning as well
as the completion of attack instances can be detected.
It is a data stream approach, i.e., Each Observed alert is •	
processed only a few times [4]. Thus, it can be applied online
and under harsh timing constraints.

II. Related Works
Most existing IDS are optimized to detect attacks with high
accuracy. However, they still have various disadvantages that have

been outlined in a number of publications and a lot of work has
been done to analyze IDS in order to direct future research (cf. [5],
for instance). Besides others, one drawback is the large amount of
alerts produced. Recent research focuses on the correlation of alerts
from (possibly multiple) IDS.Probably, the most comprehensive
approach to alert correlation is introduced In [7], a similar
approach is used to eliminate duplicates, i.e., alerts that share
the same quadruple of source and destination address as well
as source and destination port. In addition, alerts are aggregated
(online) into predefined clusters (so-called situations) in order to
provide a more condensed view of the current attack situation.
Another approach to alert correlation is presented in. A weighted,
attribute-wise similarity operator is used to decide whether to fuse
two alerts or not. In , another clustering algorithm that is based on
attribute-wise similarity measures with user defined parameters is
presented. However, a closer look at the parameter setting reveals
that the similarity measure, in fact, degenerates to a strict sorting
according to the source and destination IP addresses and ports of
the alerts. The drawbacks that arise thereof are the same as those
mentioned above.
In , three different approaches are presented to fuse alerts. The
first, quite simple one groups alerts according to their source IP
address only. The other two approaches are based on different
supervised learning techniques.
The main difference to our approach is that the algorithm can only
be used in an offline setting and is intended to analyze historical
alert logs. In contrast, we use an online approach to model the
current attack situation. The alert clustering approach described in
is based on but aims at reducing the false positive rate. The created
cluster structure is used as a filter to reduce the amount of created
alerts. Those alerts that are similar to already known false positives
are kept back, whereas alerts that are considered to be legitimate
(i.e., dissimilar to all known false positives) are reported and not
further aggregated. A completely different clustering approach is
presented in. There, the reconstruction error of an autoassociator
neural network (AA-NN) is used to distinguish different types
of alerts.

Fig. 1: Architecture of an Intrusion Detection Agent

IJCST Vol. 3, Issue 3, July - Sept 2012 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 666 International Journal of Computer Science And Technology

III. Anovel Online Alert Aggregation Techniques
In this section, we describe our new alert aggregation approach
which is—at each point in time—based on a probabilistic model
of the current situation. To outline the preconditions and objectives
of alert aggregation, we start with a short sketch of our intrusion
framework.

A. Collaborating Intrusion Detect-ion Agents
In our work, we focus on a system of structurally very similar
so-called intrusion detection (ID) agents. Through self-organized
collaboration, these ID agents form a distributed intrusion detection
system (DIDS) In case of attack suspicion; they create alerts which
are then forwarded to the alert processing layer. Alerts may also
be produced by FW or the like. At the alert processing layer, the
alert aggregation module has to combine alerts that are assumed
to belong to a specific attack instance.

B. Alert Generation and Format
In this section, we make some comments on the information
contained in alerts, the objects that must be aggregated, and on their
format. As the concrete content and format depend on a specific
task and on certain realizations of the sensors and detectors,
some more details will be given in Section 4together with the
experimental conditions.
At the sensor layer, sensors determine the values of attributes
that are used as input for the detectors as well as for the alert
clustering module. Attributes in an event that are independent of
a particular attack instance can be used for classification at the
detection layer. Attributes that are (or might be) dependent on
the attack instance can be used in an alert aggregation process to
distinguish different attack instances.

C. Offline Alert Aggregations
In this section, we introduce an offline algorithm for alert
aggregation which will be extended to a data stream algorithm
for online aggregation in Section 3.4.Only two of the attributes
are shown and the correspondence of alerts and (true or estimated)
attack instances is indicated by different symbols.has observations
of the detectors (alerts) in the attribute space without attack instance
labels as outlined in Fig. 2b. That is, it has to reconstruct the attack
situation. Then, meta-alerts can be generated that are basically an
abstract description of the cluster of alerts assumed to originate
from one attack instance. Thus, the amount of data is reduced
substantially without losing important information

False alerts are not recognized as such And wrongly assigned •	
to clusters: This situation is acceptable as long as the number
of false alerts is comparably low.
True alerts are wrongly assigned to clusters: This situation •	
is not really problematic as long as the majority of alerts
belonging to that cluster is correctly assigned. Then, no attack
instance is missed.

Some additional remarks must be made:

1. Initialization of Model Parameters
 The aim of the initialization is to find good initial values. Instead
of using a random initialization which results in higher runtimes
and sub-optimal solutions, we use a heuristic which we have
successfully applied to the training of radial basis function neural
networks. This heuristic selects as initial cluster centers a set of
alerts with a large spread in the attribute space.

2. Hard Assignment of Alerts to Components
More general EM algorithms make a gradual assignment of alerts
to components in the E step (cf. responsibilities in [3]). In practical
applications, a hard assignment reduces the runtimes significantly
at the cost of slightly worse solutions in some situations. In our
case, this is acceptable as we do not want to find the optimal
model parameters at the end, but to generate the optimal set of
meta-alerts.

3. Stopping Criterion
An EM algorithm guarantees that the set of parameters is improved
in each step. In addition, due to the hard assignment of alerts,
there exist a limited number of possible assignments. Thus,

	
Fig. 2: Example Illustrating the Principle of online alert aggregation
(artificial attack situation). (a) Existing model: Components have
been created by the alert aggregation module. These components
are the basis for meta-alert generation. (b) Assignment problem:
New observations must either be assigned to an existing component
which is then adapted or a new component must be created. Also,
outdated components must be deleted. (c) Adapted model: The new
situation after a few steps. One component has been created, one
component has been deleted, and the other components have been
adapted accordingly.ne important task has not been mentioned
so far: The estimation of the number of components (clusters) J
from the set of observed samples A. Up to now, we assumed that
this number is given. In our case, the number of clusters shall
correspond to the number of attack instances in an ideal case. To
solve this problem, cluster validation measures can be used to
assess the quality of a clustering result. A clustering algorithm is
started several times with a varying number of clusters; the quality
for each clustering result is assessed Numerically, and finally the
results are compared and the number that optimizes this measure
is chosen (so-called relative criterion, cf.).

D. Data Stream Alert Aggregation
In this section, we describe how the offline approach is extended
to an online approach working for dynamic attack situations.
Assume that in the environment observed by an ID agent attackers
initiate new attack instances that cause alerts for a certain time
interval until this attack instance is completed. Thus, at any point
in time the ID agent—which is assumed to have a model of the
current situation, cf. Fig. 2a—has several tasks, cf. Fig. 2b:

IJCST Vol. 3, Issue 3, July - Sept 2012

w w w . i j c s t . c o m International Journal of Computer Science And Technology   667

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

1. Component Adaption
Alerts associated with already recognized attack instances must be
identified as such and assigned to already existing clusters while
adapting the respective component parameters.

2. Component Creation (Novelty Detection)
The occurrence of new attack instances must be stated. New
components must be parameterized accordingly.

3. Component Deletion (Obsoleteness Detection)
The completion of attack instances must be detected and the
respective components must be deleted from the model. That is,
the ID agent must be situation-aware and try to keep his model
of the current attack situation permanently up to date, see Fig.
2c.Clearly, there is a trade-off between runtime (or reaction time)
and accuracy. For example, it is hardly possible to decide upon
the existence of a new attack instance when only one observation
is made. From the viewpoint of our objectives (cf. Section 3.1),
the tasks 1 and 2 are more time critical than task 3.
Algorithm 2 describes the online alert aggregation. If a new alert
is observed we first have to decide whether a first component
has to be created. In this case, we initialize its Parameters with
information taken from this alert. Random, small values are added,
for example, to prevent any subsequent optimization steps from
running into singularities of the respective likelihood function [3].
Otherwise, we have to decide whether the alert has to be associated
with an existing component or not, i.e., whether we believe that
it belongs to an ongoing attack instance or not. Provisionally, we
assign the alert to the most likely component (E step) and optimize
the parameters of this component (M step). For the reason of
temporal efficiency, we do not conduct a sequence of E and M
steps for the overall model. In some tests [9], it turned out that our
main goal—not to miss any attack instances, see Section 3.1—can
be achieved this way with substantially lower runtimes but at the
cost of some redundant meta-alerts (due to split of clusters, see
Section 3.3).

D. Meta-Alert Generation and Format

With the creation of a new component, an appropriate Meta alert
that represents the information about the component in an abstract
way is created. Every time a new alert is added to a component,
the corresponding meta-alert is update dincrementally, too. That
is, the meta-alert “evolves” with the component. Meta-alerts may
be the basis for a whole set further tasks

IV. Experimental Results

Fig. 3: ROC Curve for the SVM Detector

IJCST Vol. 3, Issue 3, July - Sept 2012 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 668 International Journal of Computer Science And Technology

A. Description of the Benchmark Data Sets

1. DARPA Data
For the DARPA evaluation , several weeks of training and test data
have been generated on a test bed that emulates small government
site. The network architecture as well as the generated network
traffic has been designed to be similar to that of an Air Force base.
We used the TCP/IP network dump as input data and analyzed
all 104 TCP-based attack instances that have been launched
against the various target hosts. At the detection layer, we apply
SVM to classify the sensor events. Four operating points (OP)
are marked.

2. Campus Network Data
To assess the performance of our approach in more detail, we
also conducted own attack experiments. We launched several
brute force password guessing attacks against the mail server
(POP3) of our campus network and recorded the network traffic.
The attack instances differed in origin, start time, duration, and
password guessing rate. The attack schedule was designed to reflect
situations which we regard as being difficult to recognize.

3. Internet Service Provider Firewall Logs
The third data set used here differs from the previous ones as we
actually do not have a detector layer that performs a classification
and searches for known attacks. Instead, we use log messages that
were generated by a CISCO PIX system, which is a well-known
commercial FW and network address translation (NAT) device.

B. Performance Measures
In order to assess the performance of the alert aggregation, we
evaluate the following measures:
Percentage of detected instances (p). We regard an attack
instance as being detected if there is at least one Meta alert that
predominantly contains alerts of that particular instance. The
percentage of detected attack instances p can thus be determined
by dividing the number of instances that are detected by the total
number of instances in the data set.
Several independent attackers. In the DARPA data set, some attack
instances are labeled as a single attack instance although they are
in fact comprised of the actions of several independent attackers.
A typical example is a WAREZCLIENT instance in week four:
There, attackers download illegally provided software from a
compromised FTP server.
Long attack duration. Attack instances with a long duration are
often split into several meta-alerts. Typical examples are slow or
hidden port scans or (distributed) denial of service attacks which
can last several hours.
Bidirectional communication.TCP/IP-based attack instances p can
thus be determined by dividing the number of instances that are
detected by the total number of instances in the data set.

C. Results
In the following, the results for the alert aggregation are presented.
For all experiments, the same parameter settings are used. We
set the threshold _ that decides whether to add a new alert to an
existing component or not to five percent, and the value for the
threshold _ that specifies the allowed temporal spread of the alert
buffer to 180 seconds. _ was set that low value in order to ensure
that even a quite small degrade of the cluster quality, which could
indicate a new attack instance, results in a new component.

1. Darpa Data
Results for the DARPA data set are given in Table 2. First of all,
it must be stated there is an operation point of the SVM at the
detection layer (OP 1) where we do not miss any attack instances
at all (at least in addition to those already missed at the detection
layer)and 99.02 percent (OP 4). In OP 3, a FORMAT instance and
a MULTIHOP instance are missed. Following reasons: The main
reason in the case of the FORMAT instance is the small number
of only four alerts. Those alerts are created by the detector layer
for all OP, i.e., there is obviously no benefit from choosing an
OP with higher FPR. Hence, as the false alerts easily outnumber
the four true FORMAT alerts within this cluster, the FORMAT
instance gets lost. For the MULTIHOP instance, for which we
have 19 alerts, the situation is more complex.

Table 2:

Communication between two hosts results in packets transmitted
in both directions. If the detector layer produces alerts for both
directions (e.g., due to malicious packets), the source and
destination IP address are swapped, which in the end results in
two meta-alerts.

2. Campus Network Data
For the campus network data, for which the IDS Snort was used
to create alerts, quite similar results could be achieved (see Table
2). All attack instances that have been launched were correctly
detected. For the 17 attack instances with 128,816 alerts, 52 meta-
alerts were created, which is equivalent to a reduction rate of
99.96 percent. Again, the majority of meta-alerts is caused by
false alerts.

3. Internet Service Provider Firewall Logs
 For the firewall log data, the proposed alert aggregation could also
be applied successfully. As Table 2 shows, 56 meta-alerts were
created for the 4,989 alerts, which is a reduction rate of 98.86
percent. As it is not possible to specify a percentage of detected
attack instances, we analyzed the content of the 56 resulting meta-
alerts: In many cases, it is possible to find a particular reason for
the meta-alerts

D. Conclusion
The experiments demonstrated the broad applicability of the
proposed online alert aggregation approach. We analyzed three
different data sets and showed that machine-learning-based
detectors, conventional signature based detectors, and even
firewalls can be used as alert generators.

V. Summary and Outlook
We presented a novel technique for online alert aggregation and
generation of meta-alerts. We have shown that the sheer amount
of data that must be reported to a human security expert or
communicated within a distributed intrusion detection system,

IJCST Vol. 3, Issue 3, July - Sept 2012

w w w . i j c s t . c o m International Journal of Computer Science And Technology   669

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

for instance, can be reduced significantly.

VI. Acknowledgments
This work was partly supported by the German Research
Foundation (DFG) under grant number SI 674/3-2. The authors
would like to thank D. Fisch for his support in preparing one of
the data sets. The authors highly appreciate the suggestions of the
anonymous reviewers that helped them to improve the quality of
the article.

References
[1]	 S.Axelsson,“Intrusion Detection Systems: A Survey and

Taxonomy”, Technical Report 99-15, Dept. of Computer
Eng., Chalmers Univ. of Technology, 2000.

[2]	 M.R.Endsley,“Theoretical Underpinnings of Situation
Awareness: A Critical Review”, Situation Awareness Analysis
and Measurement, M.R. Endsley and D.J. Garland, eds.,
chapter 1, pp. 3-32, Lawrence Erlbaum Assoc., 2000.

[3]	 C.M. Bishop,"Pattern Recognition and Machine Learning",
Springer, 2006.

[4]	 M.R.Henzinger, P. Raghavan, S. Rajagopalan,"Computing
on Data Streams", Am. Math. Soc., 1999.

[5]	 A. Allen,“Intrusion Detection Systems: Perspective”,
Technical Report DPRO-95367, Gartner, Inc., 2003.

[6]	 F. Valeur, G. Vigna, C. Kru¨ gel, R.A. Kemmerer, “A
Comprehensive Approach to Intrusion Detection Alert
Correlation”, IEEE Trans. Dependable and Secure Computing,
Vol. 1, No. 3, pp. 146-169, July-Sept. 2004.

[7]	 H.Debar, A. Wespi,“Aggregation and Correlation of Intrusion-
Detection Alerts”, Recent Advances in Intrusion Detection,
W. Lee, L. Me, and A. Wespi, eds., pp. 85-103, Springer,
2001.

[8]	 D. Li, Z. Li, J. Ma,“Processing Intrusion Detection Alerts
in Large-Scale Network”, Proc. Int’l Symp. Electronic
Commerce and Security, pp. 545-548, 2008.

