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Abstract
Meta-alerts is the basis for reporting to security experts or for 
communication within a distributed intrusion detection system. . 
With three benchmark data sets, we demonstrate that it is possible 
to achieve reduction rates of up to 99.96 percent while the number 
of missing meta-alerts is extremely low. In addition, meta-alerts 
are generated with a delay of typically only a few seconds after 
observing the first alert belonging to a new attack instance. Meta-
alerts can be generated for the clusters that contain all the relevant 
information whereas the amount of data (i.e., alerts) can be reduced 
substantially. Intrusion detection can be used to identify the types 
of hackers attempting to tress pass into the system, thus we use 
the concept of alerts to cluster the types of attacks and the further 
counter measures, by using the concept of firewalls. . In addition, 
even low rates of false alerts could easily result in a high total 
number of false alerts if thousands of network packets or log file 
entries are inspected
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I. Introduction
Intrusion Detection Systems (IDS) are besides other protective 
measures such as virtual private networks, authentication 
mechanisms, or encryption techniques very important to guarantee 
information security. At present, most IDS are quite reliable in 
detecting suspicious actions by evaluating TCP/IP connections 
or log files, for instance. Once AN ID finds a suspicious action, 
it immediately creates an alert which contains information about 
the source, target, and estimated type of the attack. IDS usually 
focus on detecting attack types, but not on distinguishing between 
different attack instances. In addition, even low rates of false alerts 
could easily result in a high total number of false alerts if thousands 
of network packets or log file entries are inspected. 
This problem is not new, but current solutions are typically based 
on a quite simple sorting of alerts, e.g., according to their source, 
destination, and attack type. Under real conditions such as the 
presence of classification errors of the low-level IDS (e.g., false 
alerts), uncertainty with respect to the source of the attack due 
to spoofed IP addresses, or wrongly adjusted time windows, for 
instance, such an approach fails quite often. Our approach has the 
following distinct properties:

It is a generative modeling approach [3] Using probabilistic • 
methods. Assuming that attack instances can be regarded as 
random processes “producing” alerts, we aim at modeling 
these processes using approximate maximum likelihood 
parameter estimation techniques. Thus, the beginning as well 
as the completion of attack instances can be detected.
It is a data stream approach, i.e., Each Observed alert is • 
processed only a few times [4]. Thus, it can be applied online 
and under harsh timing constraints. 

II. Related Works
Most existing IDS are optimized to detect attacks with high 
accuracy. However, they still have various disadvantages that have 

been outlined in a number of publications and a lot of work has 
been done to analyze IDS in order to direct future research (cf. [5], 
for instance). Besides others, one drawback is the large amount of 
alerts produced. Recent research focuses on the correlation of alerts 
from (possibly multiple) IDS.Probably, the most comprehensive 
approach to alert correlation is introduced In  [7], a similar 
approach is used to eliminate duplicates, i.e., alerts that share 
the same quadruple of source and  destination address as well 
as source and destination port. In addition, alerts are aggregated 
(online) into predefined clusters (so-called situations) in order to 
provide a more condensed view of the current attack situation. 
Another approach to alert correlation is presented in. A weighted, 
attribute-wise similarity operator is used to decide whether to fuse 
two alerts or not. In , another clustering algorithm that is based on 
attribute-wise similarity measures with user defined parameters is 
presented. However, a closer look at the parameter setting reveals 
that the similarity measure, in fact, degenerates to a strict sorting 
according to the source and destination IP addresses and ports of 
the alerts. The drawbacks that arise thereof are the same as those 
mentioned above.
In , three different approaches are presented to fuse alerts. The 
first, quite simple one groups alerts according to their source IP 
address only. The other two approaches are based on different 
supervised learning techniques.
The main difference to our approach is that the algorithm can only 
be used in an offline setting and is intended to analyze historical 
alert logs. In contrast, we use an online approach to model the 
current attack situation. The alert clustering approach described in  
is based on  but aims at reducing the false positive rate. The created 
cluster structure is used as a filter to reduce the amount of created 
alerts. Those alerts that are similar to already known false positives 
are kept back, whereas alerts that are considered to be legitimate 
(i.e., dissimilar to all known false positives) are reported and not 
further aggregated. A completely different clustering approach is 
presented in. There, the reconstruction error of an autoassociator 
neural network (AA-NN) is used to distinguish different types 
of alerts. 

Fig. 1: Architecture of an Intrusion Detection Agent
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III. Anovel Online Alert Aggregation Techniques
In this section, we describe our new alert aggregation approach 
which is—at each point in time—based on a probabilistic model 
of the current situation. To outline the preconditions and objectives 
of alert aggregation, we start with a short sketch of our intrusion 
framework. 

A. Collaborating Intrusion Detect-ion Agents
In our work, we focus on a system of structurally very similar 
so-called intrusion detection (ID) agents. Through self-organized 
collaboration, these ID agents form a distributed intrusion detection 
system (DIDS) In case of attack suspicion; they create alerts which 
are then forwarded to the alert processing layer. Alerts may also 
be produced by FW or the like. At the alert processing layer, the 
alert aggregation module has to combine alerts that are assumed 
to belong to a specific attack instance. 

B. Alert Generation and Format
In this section, we make some comments on the information 
contained in alerts, the objects that must be aggregated, and on their 
format. As the concrete content and format depend on a specific 
task and on certain realizations of the sensors and detectors, 
some more details will be given in Section 4together with the 
experimental conditions.
At the sensor layer, sensors determine the values of attributes 
that are used as input for the detectors as well as for the alert 
clustering module. Attributes in an event that are independent of 
a particular attack instance can be used for classification at the 
detection layer. Attributes that are (or might be) dependent on 
the attack instance can be used in an alert aggregation process to 
distinguish different attack instances. 

C. Offline Alert Aggregations
In this section, we introduce an offline algorithm for alert 
aggregation which will be extended to a data stream algorithm 
for online aggregation in Section 3.4.Only two of the attributes 
are shown and the correspondence of alerts and (true or estimated) 
attack instances is indicated by different symbols.has observations 
of the detectors (alerts) in the attribute space without attack instance 
labels as outlined in Fig. 2b. That is, it has to reconstruct the attack 
situation. Then, meta-alerts can be generated that are basically an 
abstract description of the cluster of alerts assumed to originate 
from one attack instance. Thus, the amount of data is reduced 
substantially without losing important information

False alerts are not recognized as such And wrongly assigned • 
to clusters: This situation is acceptable as long as the number 
of false alerts is comparably low.
True alerts are wrongly assigned to clusters: This situation • 
is not really problematic as long as the majority of alerts 
belonging to that cluster is correctly assigned. Then, no attack 
instance is missed.

Some additional remarks must be made:

1. Initialization of Model Parameters
 The aim of the initialization is to find good initial values. Instead 
of using a random initialization which results in higher runtimes 
and sub-optimal solutions, we use a heuristic which we have 
successfully applied to the training of radial basis function neural 
networks. This heuristic selects as initial cluster centers a set of 
alerts with a large spread in the attribute space.

2. Hard Assignment of Alerts to Components
More general EM algorithms make a gradual assignment of alerts 
to components in the E step (cf. responsibilities in [3]). In practical 
applications, a hard assignment reduces the runtimes significantly 
at the cost of slightly worse solutions in some situations. In our 
case, this is acceptable as we do not want to find the optimal 
model parameters at the end, but to generate the optimal set of 
meta-alerts.

3. Stopping Criterion 
An EM algorithm guarantees that the set of parameters is improved 
in each step. In addition, due to the hard assignment of alerts, 
there exist a limited number of possible assignments. Thus, 

          
Fig. 2: Example Illustrating the Principle of online alert aggregation 
(artificial attack situation). (a) Existing model: Components have 
been created by the alert aggregation module. These components 
are the basis for meta-alert generation. (b) Assignment problem: 
New observations must either be assigned to an existing component 
which is then adapted or a new component must be created. Also, 
outdated components must be deleted. (c) Adapted model: The new 
situation after a few steps. One component has been created, one 
component has been deleted, and the other components have been 
adapted accordingly.ne important task has not been mentioned 
so far: The estimation of the number of components (clusters) J 
from the set of observed samples A. Up to now, we assumed that 
this number is given. In our case, the number of clusters shall 
correspond to the number of attack instances in an ideal case. To 
solve this problem, cluster validation measures can be used to 
assess the quality of a clustering result. A clustering algorithm is 
started several times with a varying number of clusters; the quality 
for each clustering result is assessed  Numerically, and finally the 
results are compared and the number that optimizes this measure 
is chosen (so-called relative criterion, cf. ). 

D. Data Stream Alert Aggregation
In this section, we describe how the offline approach is extended 
to an online approach working for dynamic attack situations. 
Assume that in the environment observed by an ID agent attackers 
initiate new attack instances that cause alerts for a certain time 
interval until this attack instance is completed. Thus, at any point 
in time the ID agent—which is assumed to have a model of the 
current situation, cf. Fig. 2a—has several tasks, cf. Fig. 2b:
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1. Component Adaption
Alerts associated with already recognized attack instances must be 
identified as such and assigned to already existing clusters while 
adapting the respective component parameters.

2. Component Creation (Novelty Detection)
The occurrence of new attack instances must be stated. New 
components must be parameterized accordingly.

3. Component Deletion (Obsoleteness Detection) 
The completion of attack instances must be detected and the 
respective components must be deleted from the model. That is, 
the ID agent must be situation-aware and try to keep his model 
of the current attack situation permanently up to date, see Fig. 
2c.Clearly, there is a trade-off between runtime (or reaction time) 
and accuracy. For example, it is hardly possible to decide upon 
the existence of a new attack instance when only one observation 
is made. From the viewpoint of our objectives (cf. Section 3.1), 
the tasks 1 and 2 are more time critical than task 3.
Algorithm 2 describes the online alert aggregation. If a new alert 
is observed we first have to decide whether a first component 
has to be created. In this case, we initialize its Parameters with 
information taken from this alert. Random, small values are added, 
for example, to prevent any subsequent optimization steps from 
running into singularities of the respective likelihood function [3]. 
Otherwise, we have to decide whether the alert has to be associated 
with an existing component or not, i.e., whether we believe that 
it belongs to an ongoing attack instance or not. Provisionally, we 
assign the alert to the most likely component (E step) and optimize 
the parameters of this component (M step). For the reason of 
temporal efficiency, we do not conduct a sequence of E and M 
steps for the overall model. In some tests [9], it turned out that our 
main goal—not to miss any attack instances, see Section 3.1—can 
be achieved this way with substantially lower runtimes but at the 
cost of some redundant meta-alerts (due to split of clusters, see 
Section 3.3). 

D. Meta-Alert Generation and Format

With the creation of a new component, an appropriate Meta alert 
that represents the information about the component in an abstract 
way is created. Every time a new alert is added to a component, 
the corresponding meta-alert is update dincrementally, too. That 
is, the meta-alert “evolves” with the component. Meta-alerts may 
be the basis for a whole set further tasks

IV. Experimental Results

Fig. 3: ROC Curve for the SVM Detector
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A. Description of the Benchmark Data Sets

1. DARPA Data
For the DARPA evaluation , several weeks of training and test data 
have been generated on a test bed that emulates small government 
site. The network architecture as well as the generated network 
traffic has been designed to be similar to that of an Air Force base. 
We used the TCP/IP network dump as input data and analyzed 
all 104 TCP-based attack instances that have been launched 
against the various target hosts. At the detection layer, we apply 
SVM to classify the sensor events. Four operating points (OP) 
are marked. 

2. Campus Network Data
To assess the performance of our approach in more detail, we 
also conducted own attack experiments. We launched several 
brute force password guessing attacks against the mail server 
(POP3) of our campus network and recorded the network traffic. 
The attack instances differed in origin, start time, duration, and 
password guessing rate. The attack schedule was designed to reflect 
situations which we regard as being difficult to recognize.

3. Internet Service Provider Firewall Logs
The third data set used here differs from the previous ones as we 
actually do not have a detector layer that performs a classification 
and searches for known attacks. Instead, we use log messages that 
were generated by a CISCO PIX system, which is a well-known 
commercial FW and network address translation (NAT) device. 

B. Performance Measures
In order to assess the performance of the alert aggregation, we 
evaluate the following measures:
Percentage of detected instances (p). We regard an attack 
instance as being detected if there is at least one Meta alert that 
predominantly contains alerts of that particular instance. The 
percentage of detected attack instances p can thus be determined 
by dividing the number of instances that are detected by the total 
number of instances in the data set. 
Several independent attackers. In the DARPA data set, some attack 
instances are labeled as a single attack instance although they are 
in fact comprised of the actions of several independent attackers. 
A typical example is a WAREZCLIENT instance in week four: 
There, attackers download illegally provided software from a 
compromised FTP server. 
Long attack duration. Attack instances with a long duration are 
often split into several meta-alerts. Typical examples are slow or 
hidden port scans or (distributed) denial of service attacks which 
can last several hours. 
Bidirectional communication.TCP/IP-based attack instances p can 
thus be determined by dividing the number of instances that are 
detected by the total number of instances in the data set. 

C. Results
In the following, the results for the alert aggregation are presented. 
For all experiments, the same parameter settings are used. We 
set the threshold _ that decides whether to add a new alert to an 
existing component or not to five percent, and the value for the 
threshold _ that specifies the allowed temporal spread of the alert 
buffer to 180 seconds. _ was set that low value in order to ensure 
that even a quite small degrade of the cluster quality, which could 
indicate a new attack instance, results in a new component. 

1. Darpa Data
Results for the DARPA data set are given in Table 2. First of all, 
it must be stated there is an operation point of the SVM at the 
detection layer (OP 1) where we do not miss any attack instances 
at all (at least in addition to those already missed at the detection 
layer)and 99.02 percent (OP 4). In OP 3, a FORMAT instance and 
a MULTIHOP instance are missed.   Following reasons: The main 
reason in the case of the FORMAT instance is the small number 
of only four alerts. Those alerts are created by the detector layer 
for all OP, i.e., there is obviously no benefit from choosing an 
OP with higher FPR. Hence, as the false alerts easily outnumber 
the four true FORMAT alerts within this cluster, the FORMAT 
instance gets lost. For the MULTIHOP   instance, for which we 
have 19 alerts, the situation is more complex. 

Table 2:

Communication between two hosts results in packets transmitted 
in both directions. If the detector layer produces alerts for both 
directions (e.g., due to malicious packets), the source and 
destination IP address are swapped, which in the end results in 
two meta-alerts. 

2. Campus Network Data
For the campus network data, for which the IDS Snort was used 
to create alerts, quite similar results could be achieved (see Table 
2). All attack instances that have been launched were correctly 
detected. For the 17 attack instances with 128,816 alerts, 52 meta-
alerts were created, which is equivalent to a reduction rate of 
99.96 percent. Again, the majority of meta-alerts is caused by 
false alerts. 

3. Internet Service Provider Firewall Logs
 For the firewall log data, the proposed alert aggregation could also 
be applied successfully. As Table 2 shows, 56 meta-alerts were 
created for the 4,989 alerts, which is a reduction rate of 98.86 
percent. As it is not possible to specify a percentage of detected 
attack instances, we analyzed the content of the 56 resulting meta-
alerts: In many cases, it is possible to find a particular reason for 
the meta-alerts

D. Conclusion
The experiments demonstrated the broad applicability of the 
proposed online alert aggregation approach. We analyzed three 
different data sets and showed that machine-learning-based 
detectors, conventional signature based detectors, and even 
firewalls can be used as alert generators. 

V. Summary and Outlook
We presented a novel technique for online alert aggregation and 
generation of meta-alerts. We have shown that the sheer amount 
of data that must be reported to a human security expert or 
communicated within a distributed intrusion detection system, 
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for instance, can be reduced significantly. 
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