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Abstract
Quality of data is a major problem in high dimensional and modern 
databases. Especially in data entry forms present the initial and 
arguable an efficient opportunity for identifying and mitigating 
the errors, but there are many methods and researches which 
are conducted in order to improve the data quality during the 
entry of data into the forms. In this paper we propose an end 
to end system for designing of forms, entry and providing the 
quality assurance to the data during the submission of forms. 
This system learns a probabilistic model over the question of the 
form. At every step of the form entry this model is implemented 
to provide the better quality assurance compare with the earlier 
methodologies. Before the entry, it induces and identifies a form 
layout that captures the important data values of a form. Before 
entry, it induces a form layout that captures the most important data 
values of a form instance as quickly as possible and reduces the 
complexity of error-prone questions. During entry, it dynamically 
adapts the form to the values being entered by providing real-time 
interface feedback, reasking questions with dubious responses, 
and simplifying questions by reformulating them. After entry, it 
revisits question responses that it deems likely to have been entered 
incorrectly by reasking the question or a reformulation thereof. 
We evaluate these components of USHER using two real-world 
data sets. Our results demonstrate that USHER can improve data 
quality considerably at a reduced cost when compared to current 
practice
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I. Introduction
Organizations and individuals routinely make important decisions 
based on inaccurate data stored in supposedly authoritative 
databases. Data errors in some domains, such as medicine,  may  
have  particularly  severe  consequences. These errors can arise at a 
variety of points in the life cycle of data,  from  data  entry,  through  
storage,  integration,  and cleaning,  all  the  way  to  analysis and 
decision  making [1]. While each step  presents  an  opportunity  
to  address  data quality, entry time offers the earliest opportunity 
to catch and correct errors. The database community has focused 
on data cleaning once data have been collected into a database, and 
has paid relatively little attention to data quality at collection time 
[1-2]. Current best practices for quality during data entry  come  
from  the  field  of  survey  methodology,  which offers principles 
that include manual question orderings and input  constraints,  
and  double  entry  of  paper  forms  [3]. Although this has long 
been the de facto quality assurance standard in data collection 
and transformation, we believe this area merits reconsideration. 
For both paper forms and direct electronic entry, we posit that a 
data-driven and more computationally sophisticated approach 
can significantly outperform these decades-old static methods 
in both accuracy and efficiency of data entry. The problem of 
data quality is magnified in low-resource data collection settings. 
Recently, the World Health Organization likened the lack of 
quality health information in developing regions to a “gathering 
storm,” saying, “[to] make people count, we first need to be 
able to count people” [4]. Indeed, many health organizations, 

particularly those operating with limited resources in developing 
regions, struggle with collecting high-quality data. Why is data 
collection so challenging? First, many organizations lack expertise 
in paper and electronic form design: designers approach question 
and answer choice selection with a defensive, catchall mind-set, 
adding answer choices and questions that may not be necessary; 
furthermore, they engage in ad hoc mapping of required data 
fields to data-entry widgets by intuition [5-6], often ignoring or 
specifying ill-fitting constraints. Second, double entry is too costly. 
In some cases this means it is simply not performed, resulting 
in poor data quality. In other cases, particularly when double 
entry is mandated by third parties, it results in delays and other 
unintended negative consequences. We observed this scenario 
in an HIV/AIDS program in Tanzania, where time-consuming 
double entry was imposed upon a busy local clinic. The effort 
required to do the double entry meant that the transcription was 
postponed for months and handled in batch. Although the data 
eventually percolated up to national and international agencies, 
in the interim the local clinic was operating as usual via paper 
forms, unable to benefit from an electronic view of the data latent 
in their organization. Finally, many organizations in developing 
regions are beginning to use mobile devices like smartphones 
for data collection; for instance, community health workers are 
doing direct digital data entry in remote locations. Electronic 
data-entry devices offer different affordances than those of paper, 
displacing the role of traditional form design and double entry 
[5]. We often found that there were no data quality checks at all 
in naı¨vely implemented mobile interfaces, compounding the fact 
that mobile data-entry quality is 10 times worse than dictation to 
a human operator [7].
To address this spectrum of data quality challenges, we have 
developed USHER, an end-to-end system that can improve 
data quality and efficiency at the point of entry by learning 
probabilistic models from existing data, which stochastically 
relate the questions of a data-entry form. These models form a 
principled foundation on which we develop information-theoretic 
algorithms for form design, dynamic form adaptation during entry, 
and answer verification:

Since form layout and question selection is often ad hoc, 1.	
USHER optimizes question ordering according to a 
probabilistic objective function that aims to maximize the 
information content of form answers as early as possible—
we call this the greedy informa-tion gain principle. Applied 
before entry, the model generates a static but entropy-optimal 
ordering, which focus on important questions first; during 
entry, it can be used to dynamically pick the next best question, 
based on answers so far—appropriate in scenarios where 
question ordering can be flexible between instances. 
Applying its probabilistic model during data entry, USHER 2.	
can evaluate the conditional distribution of answers to a 
form question, and make it easier for likely answers to be 
entered—we call this the appropriate entry friction principle. 
For difficult-to-answer questions, such as those with many 
extra-neous choices, USHER can opportunistically reformu-
late them to be easier and more congruous with the available 
information. In this way, USHER effectively allows for a 
principled, controlled trade-off between data quality and form 
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filling effort and time. 
Finally, the stochastic model is consulted to predict which 3.	
responses may be erroneous, so as to reask those questions in 
order to verify their correctness— we call this the contextualized 
error likelihood princi-ple. We consider reasking questions 
both during the data-entry process (integrated reasking) and 
after data entry has been finished (post hoc reasking). In both 
cases, intelligent question reasking approxi-mates the benefits 
of double entry at a fraction of the cost. 

In addition, we may extend USHER’s appropriate entry friction 
approach to provide a framework for reasoning about feedback 
mechanisms for the data-entry user inter-face. During data entry, 
using the likelihood of unanswered fields given entered answers, 
and following the intuition that multivariate outliers are values 
warranting reexamina-tion by the data-entry worker, USHER 
can guide the user with much more specific and context-aware 
feedback. In Section 9, we offer initial thoughts on design patterns 
for USHER-inspired dynamic data-entry interfaces.
The contributions of this paper are fourfold:

We describe the design of USHER’s core: probabilistic 1.	
models for arbitrary data-entry forms
We describe USHER’s application of these models to provide 2.	
guidance along each step of the data-entry life cycle: reordering 
questions for greedy information gain, reformulating answers 
for appropriate entry friction, and reasking questions according 
to contextualized error likelihood. 
We present experiments showing that USHER has the 3.	
potential to improve data quality at reduced cost. We study 
two representative data sets: direct electronic entry of survey 
results about political opinion and transcription of paper-based 
patient intake forms from an HIV/AIDS clinic in Tanzania. 
Extending our ideas on form dynamics, we propose new user-4.	
interface principles for providing contex-tualized, intuitive 
feedback based on the likelihood of data as they are entered. 
This provides a foundation for incorporating data cleaning 
mechan-isms directly in the entry process. 

II. Data Entry Learning Model
The core of the USHER system is its probabilistic model of the 
data, represented as a Bayesian network over form questions. This 
network captures relationships between a form’s question elements 
in a stochastic manner. In particular, given input values for some 
subset of the questions of a particular form instance, the model 
can infer probability distributions over values of that instance’s 
remaining unanswered questions. In this section, we show how 
standard machine learning techniques can be used to induce this 
model from previous form entries.
We will use F ¼ fF1; . . . ; Fng to denote a set of random variables 
representing the values of n questions comprising a data-entry 
form. We assume that each question response takes on a finite set of 
discrete values; continuous values are discretized by dividing the 
data range into intervals and assigning each interval one value.2 
To learn the probabilistic model, we assume access to prior entries 
for the same form.
USHER first builds a Bayesian network over the form questions, 
which will allow it to compute probability distributions over 
arbitrary subsets G ₃ F of form question random variables, given 
already entered question responses G0 ¼ g0 for that instance, i.e., 
P ðG j G 0 ¼ g0Þ. Constructing this network requires two steps: 
first, the induction of the graph structure of the network, which 
encodes the condi-tional independencies between the question 
random vari-ables F; and second, the estimation of the resulting 

network’s parameters.
The naı¨ve approach to structure selection would be to assume 
complete dependence of each question on every other question. 
However, this would blow up the number of free parameters in 
our model, leading to both poor generalization performance of 
our predictions and prohibi-tively slow model queries. Instead, 
we learn the structure using the prior form submissions in the 
database. USHER searches through the space of possible structures 
using simulated annealing, and chooses the best structure accord-
ing to the Bayesian Dirichlet Equivalence criterion [23]. This 
criterion optimizes for a trade-off between model expres-siveness 
(using a richer dependency structure) and model parsimony 
(using a smaller number of parameters), thus identifying only 
the prominent, recurring probabilistic dependencies. Figs. 1 and 
2 show automatically learned structures for two data domains.3
In certain domains, form designers may already have strong 
commonsense notions of questions that should or should not depend 
on each other (e.g., education level and income are related, whereas 
gender and race are indepen-dent). As a postprocessing step, the 
form designer can manually tune the resulting model to incorporate 
such intuitions. In fact, the entire structure could be manually 
constructed in domains where an expert has comprehensive 
prior knowledge of the questions’ interdependencies. However, 
a casual form designer is unlikely to consider the complete space 
of question combinations when identi-fying correlations. In most 
settings, we believe an automatic approach to learning multivariate 
correlations would yield more effective inference.

III. Reordering Questions during Data Entry
In electronic form settings, we can take our ordering notion a 
step further and dynamically reorder questions in a form as an 
instance is being entered. This approach can be appropriate for 
scenarios when data-entry workers input one or several values 
at a time, such as on a mobile device. We can apply the same 
greedy information gain criterion as in Algorithm 1, but update the 
calculations with the previous responses in the same form instance. 
Assuming questions G F1; . . . ; F‘g	have already been filled in   
with values g ¼ ff1; . . . ; f‘g, the next question is selected by 
maximizing:

Notice that this objective is the same as (4), except that it uses 
the actual responses entered for previous questions, rather than 
taking a weighted average over all possible values. Constraints 
specified by the form designer, such as topical grouping, can also 
be respected in the dynamic framework by restricting the selection 
of next questions at every step.
In general, dynamic reordering can be particularly useful in 
scenarios where the input of one value determines the value of 
another. For example, in a form with questions for gender and 
pregnant, a response of male for the former dictates the value 
and potential information gain of the latter. However, dynamic 
reordering may be confusing to data-entry workers who routinely 
enter information into the same form, and have come to expect a 
specific question order. Determining the trade-off between these 
opposing concerns is a human factors issue that depends on both 
the application domain and the user interface employed.



IJCST Vol. 3, Issue 3, July - Sept 2012  ISSN : 0976-8491 (Online)  |  ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 662   International Journal of Computer Science And Technology

IV. Question Reasking
The next application of USHER’s probabilistic model is for 
the purpose of identifying errors made during entry. Because 
this determination is made during and immedi-ately after form 
submission, USHER can choose to reask questions during the 
same entry session. By focusing the reasking effort only on 
questions that were likely to be misentered, USHER is likely to 
catch mistakes at a small incremental cost to the data-entry worker. 
Our approach is a data-driven alternative to the expensive practice 
of double entry. Rather than reasking every question, we focus 
reasking effort only on question responses that are unlikely with 
respect to the other form responses.
Before exploring how USHER performs reasking, we explain how 
it determines whether a question response is erroneous. USHER 
estimates contextualized error likelihood for each question 
response, i.e., a probability of error that is conditioned on every 
other previously entered field response. The intuition behind 
error detection is straight-forward: questions whose responses 
are “unexpected” with respect to the rest of the known input 
responses are more likely to be incorrect. These error likelihoods 
are measured both during and after the entry of a single form 
instance.

V. Error Model
To formally model the notion of error, we extend our Bayesian 
network from Section 4 to a more sophisticated representation 
that ties together intended and actual question responses. We call 
the Bayesian network augmen-ted with these additional random 
variables the error model. Specifically, we posit a network where 
each question is augmented with additional nodes to capture a 
probabilistic view of entry error. For question i, we have the 
following set of random and observed variables:
. Fi: the correct value for the question, which is unknown to the 
system, and thus a hidden variable.
. Di: the question response provided by the data-entry worker, an 
observed variable.
. thetai: the observed variable representing the para-meters of the 
probability distribution of mistakes across possible answers, which 
is fixed per ques-tion.5 We call the distribution with parameters 
₃i the error distribution. For the current version of our model, 
₃i is set to yield a uniform distribution.
. Ri: a binary hidden variable specifying whether an error was 
made in this question. When Ri ¼ 0 (i.e., when no error is made), 
then Fi takes the same value as Di.
Additionally, we introduce a hidden variable ₃, shared across all 
questions, specifying how likely errors are to occur for a typical 
question of that form instance.
The error model. Observed variable Di represents the actual input 
provided by the data-entry worker for the ith question, while 
hidden variable Fi is the true value of that question. The rectangular 
plate around the center variables denotes that those variables are 
repeated for each of the ‘ form questions with responses that have 
already been input. The F variables are connected by edges z 2 Z, 
representing the relationships discovered in the structure learning 
process; this is the same structure used for the question ordering 
component. Variable ₃i represents the “error” distribution, which 
in our current model is uniform over all possible values. Variable 
Ri is a hidden binary indicator variable specifying whether the 
entered data were erroneous; its probability ₃i is drawn from a Beta 
prior with fixed hyperparameters ₃ and ₃. Shaded nodes denote 
observed variables, and clear nodes denote hidden variables.

Intuitively, ₃ plays the role of a prior error rate, and is modeled 
as a hidden variable so that its value can be learned directly from 
the data.
Note that the relationships between field values dis-covered during 
structure learning are still part of the graph, so that the error 
predictions are contextualized in the answers of other related 
questions.
Within an individual question, the relationships between the newly 
introduced variables are shown in Fig. 5. The diagram follows 
standard plate diagram notation [26]. In brief, the rectangle is a 
plate containing a group of variables specific to a single question 
i. This rectangle is replicated for each of ‘ form questions. The F 
variables in each question group are connected by edges z 2 Z, 
representing the relationships discovered in the structure learning 
process; this is the same structure used for the question ordering 
component. The remaining edges represent direct probabil-istic 
relationships between the variables that are described in greater 
detail below. Shaded nodes denote observed variables, and clear 
nodes denote hidden variables.
Node Ri 2 f0; 1g is a hidden indicator variable specify-ing whether 
an error will happen at this question. Our model posits that a 
data-entry worker implicitly flips a coin for Ri when entering 
a response for question i, with probability of one equal to ₃. 
Formally, this means Ri is drawn from a Bernoulli distribution 
with parameter ₃:

The value of Ri affects how Fi and Di are related, 

Fig. 1:

which is described in detail later in this section. 
We also allow the model to learn the prior probability for the ₃ 
directly from the data. This value represents the  probability of 
making a mistake on any arbitrary question. Note that ₃ is shared 
across all form questions. Learning a value for ₃ rather than fixing 
it allows the model to produce an overall probability of error for 
an entire form instance as well as for individual questions. The 
prior distribution for ₃ is a Beta distribution, which is a continuous 
distribution over the real numbers from zero to one:
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The Beta distribution takes two hyperparameters alpha and Beta, 
which we set to fixed constants (1, 19). The use of a Beta prior 
distribution for a Bernoulli random variable is standard practice 
in Bayesian modeling due to mathema-tical convenience and the 
interpretability of the hyperpara-meters as effective counts [27].
We now turn to true question value Fi and observed input Di. First, 
P (Fi | . . .) is still defined as in Section 4, maintaining as before 
the multivariate relationships be-tween questions. Second, the 
user question response Di is modeled as being drawn from either 
the true answer Fi or the error distribution theta, depending on 
whether a mistake is made according to Ri:

 ð9Þ
If Ri ¼ 0, no error occurs and the data-entry worker inputs the 
correct value for Di, and thus Fi ¼ Di. Probabilistically, this means 
Di’s probability is concentrated around Fi (i.e., a point mass at 
Fi). However, if Ri ¼ 1, then the data-entry worker makes a 
mistake, and instead chooses a response for the question from 
the error distribution. Again, this error distribution is a discrete 
distribution over possible question responses parameterized by the 
fixed parameters ₃i, which we set to be the uniform distribution 
in our current model.6

VI. Error Model Inference
The ultimate variable of interest in the error model is Ri: we wish 
to induce the probability of making an error for each previously 
answered question, given the actual question responses that are 
currently available:

where D ¼ fF1; . . . ; F‘g are the fields that currently have responses, 
the values of which are d ¼ ff1; . . . ; f‘g, respec-tively. This 
probability represents a contextualized error likelihood due 
to its dependence on other field values through the Bayesian 
network.
Again, we can use standard Bayesian inference proce-dures 
to compute this probability. These procedures are black box 
algorithms whose technical descriptions are beyond the scope 
of this paper. We refer the reader to standard graphical model 
texts for an in-depth review of different techniques [25, 28]. In 
our implementation, we use the Infer.NET toolkit [22] with the 
Expectation Propagation algorithm [29] for this estimation.
In the sections above, we described how USHER uses statistical 
information traditionally associated with offline data cleaning to 
improve interactive data entry via question ordering and reasking. 
This raises questions about the human-computer interactions 
inherent in electronic form filling, which are typically device- and 
application-dependent. In one application, we are interested in how 
data quality interactions play out on mobile devices in developing 
countries, as in the Tanzanian patient forms we examined above. 
Similar questions arise in traditional online forms like web surveys. 
In this section, we outline some design opportunities that arise 
from the probabilistic power of the models and algorithms in 
USHER. We leave the investigation of specific interface designs 
and their evaluation in various contexts to future work. While 
an interactive USHER-based interface is presenting questions 
(either one-by-one or in groups), it can infer a probability for 
each possible answer to the next question; those probabilities are 
contextualized (conditioned) by previous responses. The resulting 
quantitative probabilities can be exposed to users in different 

manners and at different times. We present some of these design 
options in the following:

A. Time of Exposure
Pre- and post entryBefore entry, Usher’s probabilistic model can 
be used to improve data-entry speed by adjusting the friction of 
entering different answers: likely results can be made easy or 
attractive to enter, while unlikely results can be made to require 
more work. One example of this is the previously described 
reformulation technique. Additional examples of data-driven 
variance in lists, and direct decoration (e.g., coloring or font size) 
of each choice in accordance with its probability. A downside of 
beforehand exposure of answer probabilities is the potential to 
bias answers. Alternatively, probabilities may be exposed in the 
interface only after the user selects an answer. This becomes a 
form of assessment—for example, by flagging unlikely choices as 
potential outliers. This can be seen as a soft, probabilistic version 
of the constraint violation visualizations commonly found in web 
forms (e.g., the red star that often shows up next to forbidden 
or missing entries). Post hoc assessment arguably has less of a 
biasing effect than friction. This is both because users choose 
initial answers without knowledge of the model’s predictions, 
and because users may be less likely to modify previous answers 
than change their minds before entry.

B. Explicitness of exposure
Feedback mechanisms in adaptive interfaces vary in terms of how 
explicitly they intervene in the user’s task. Adaptations can be 
considered elective versus mandatory. For instance, a drop-down 
menu with items sorted based on likelihood is mandatory with 
a high level of friction; whereas, a “split” drop-down menu, as 
mentioned above, is elective—the user can choose to ignore the 
popular choices. Another important consideration is the cognitive 
complexity of the feedback. For instance, when encoding expected 
values into a set of radio buttons, we can directly show the numeric 
probability of each choice, forcing a user to interpret these discrete 
probabilities. Alternatively, we can scale the opacity of answer 
labels—giving the user an indication of relative salience, without 
the need friction include type-ahead mechanisms in textfields, 
“popular choice” items repeated at the top of drop-down

Fig. 2: 

for interpretation. Even more subtly, we can dynamically adjust the 
size of answer labels’ clickable regions—similar to the adjustments 
made by the iPhone’s soft keyboard in response to the likelihood 
of various letters.
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C. Contextualization of Interface
USHER uses conditional probabilities to assess the likelihood 
of subsequent answers. However, this is not necessarily intuitive 
to a user. For example, consider a question asking for favorite 
beverage, where the most likely answers shown are milk and apple 
juice. This might be surprising in the abstract, but would be less 
so in a case where a previous question had identified the age of 
the person in question to be under 5 years old. The way that the 
interface communicates the context of the current probabilities is 
an interesting design consideration. For example, “type-ahead” 
text interfaces have this flavor, showing the likely suffix of a word 
contextualized by the previously entered prefix. More generally, 
USHER makes it possible to show a history of already entered 
answers that correlate highly with the value at hand.
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