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Abstract
 Software Testing Consumes major percentage of project cost, so 
researchers focus is  “How to minimizes cost of testing in order to 
minimize the cost of the project”. The Software defect prediction 
is a method which predict defect from historical database. Data 
mining Techniques are used to predict Software defects from 
historical databases. This paper describes frame work to produce 
software defects from the historical database and also present one 
pass data mining algorithm used to find rules to predict software 
defects. The experimental results shows that, one pass algorithm 
generate rules for software defect prediction with consider amount 
of time and with better performance.
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I. Introduction
Software testing is an investigation conducted to provide 
stakeholders with information about the quality of the product 
or service under test. A set of activities conducted with the intent 
of finding errors in software. Testing is a process used to help 
identify the correctness, completeness and quality of developed 
computer software. A Software Defect / Bug is a condition in a 
software product which does not meet a software requirement (as 
stated in the requirement specifications) or end-user expectations 
(which may not be specified but are reasonable). In other words, 
a defect is an error in coding or logic that causes a program to 
malfunction or to produce incorrect/unexpected results. Current 
defect prediction work focuses on (i) estimating the number of 
defects remaining in software systems, (ii) discovering defect 
associations, and (iii) classifying the defect-proneness of software 
components, typically into two classes defect-prone and not defect-
prone. The second type of work borrows association rule mining 
algorithms from the data mining community to re veal software 
defect associations, which can be used for three purposes. The third 
type of work classifies software components as defect-prone and 
non-defect-prone by means of metric-based classification. Being 
able to predict which components are more likely to be defect-
prone supports better targeted testing resources and therefore 
improved efficiency.
  Data mining (sometimes called data or knowledge discovery) 
is the process of analyzing data from different perspectives and 
summarizing it into useful information - information that can be 
used to increase revenue, cuts costs, or both. Association rule 
mining is to find out association rules that satisfy the predefined 
minimum support and confidence from a given database. The 
problem is usually decomposed into two sub problems. One is 
to find those item sets whose occurrences exceed a predefined 
threshold in the database; those item sets are called frequent or 
large item sets. The design and study of one-pass algorithms has 
a long tradition in many areas of computer science. For example, 
they are used in the area of data stream processing, where streams 
of huge amounts of data have to be monitored on-the-fly without 
prior storing the entire data. But also, e.g., a deterministic finite 
automaton on words can be viewed as a (very simple) example of 

a one-pass algorithm whose memory size and processing time per 
data item is constant, i.e., does not depend on the input size. For 
most computational problems, however, the amount of memory 
necessary for solving the problem grows with increasing input 
size. 
The remainder of the paper is organized as follows. Section 2 
provides related work. Section 3 describes  problem description. 
Section 4 is devoted proposed framework and one pass algorithm. 
In Section 5 results are documented. Conclusions and consideration 
of the significance of this work are given in the final section.

II. Related Work
MGF [1]   published a study in this journal in 2007 in which they 
compared the performance of two machine learning techniques 
(Rule Induction and Na¨ıve Bayes) to predict software components 
containing defects. Hall and Holmes [2]  concluded that the 
forward selection search was well suited to Na¨ıve Bayes but the 
backward elimination search is more suitable for C4.5. Cardie [3] 
found using a decision tree to select attributes helped the nearest 
neighbor algorithm to reduce its prediction error. Kubat et al. [4] 
used a decision tree . That is, which attribute subset is more useful 
for defect prediction not only depends on the attribute subset itself 
but also on the specific data set. This article has been accepted for 
publication in a future issue of this journal, but has not been fully 
edited. Content may change prior to final publication.Filtering 
attributes for use with a Na¨ıve Bayesian classifier and obtained a 
similar result. However, Kibler and Aha [5] reported more mixed 
results on two medical
Classification tasks. Therefore, before building prediction models, 
we should choose the combination of all three of learning algorithm, 
data pre-processing and attribute selection method, not merely one 
or two of them. Lessmann et al. [6] have also conducted a follow-
up to MGF on defect predictions, providing additional results as 
well as suggestions for a methodological framework. However, 
they did not perform attribute selection when building prediction 
models. Thus this work has wider application.

III. Problem Description
Association rule mining is to find out association rules that 
satisfy the predefined minimum support and confidence from a 
given database. The problem is usually decomposed into two 
subproblems. One is to find those itemsets whose occurrences 
exceed a predefined threshold in the database; those itemsets 
are called frequent or large itemsets. The second problem is to 
generate association rules from those large itemsets with the 
constraints of minimal confidence. Suppose one of the large 
itemsets is Lk, Lk = {I1, I2, … , Ik}, association rules with this 
itemsets are generated in the following way: the first rule is {I1, 
I2, … , Ik -1}  {Ik}, by checking the confidence this rule can be 
determined as interesting or not. Then other rule are generated 
by deleting the last items in the antecedent and inserting it to the 
consequent, further the confidences of the new rules are checked 
to determine the interestingness of them. Those processes iterated 
until the antecedent becomes empty. Since the second subproblem 
is quite straight forward, most of the researches focus on the first 
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subproblem.

Fig. 1: Stastics of Defect in Softwares

Let I=I1, I2, … , Im be a set of m distinct attributes, T be transaction 
that contains a set of items such that T  I, D be a database 
with different transaction records Ts. An association rule is an 
implication in the form of X Y, where X, Y  I are sets of items 
called itemsets, and X ∩ Y =∅. X is called antecedent while 
Y is called consequent, the rule means X implies Y. There are 
two important basic measures for association rules, support(s) 
and confidence( c). Since the database is large and users concern 
about only those frequently purchased items, usually thresholds of 
support and confidence are predefined by users to drop those rules 
that are not so interesting or useful. The two thresholds are called 
minimal support and minimal confidence respectively. Support(s) 
of an association rule is defined as the percentage/fraction of 
records that contain X  Y to the total number of records in the 
database. Suppose the support of an item is 0.1%, it means only 
0.1 percent of the transaction contain purchasing of this item.
Confidence of an association rule is defined as the percentage/
fraction of the number of transactions that contain X  Y to the 
total number of records that contain X. Confidence is a measure 
of strength of the association rules, suppose the confidence
of the association rule X Y is 80%, it means that 80% of the 
transactions that contain X also contain Y together.

IV. Proposed Solution

A. Frame Work
The framework consists of two components:

Scheme evaluation1.	
Defect prediction. historical data are divided into two 2.	
parts:

A training set for building learners with the given learning 
schemes, and a test set for evaluating the performances of the 
learners. It is very important that the test data are not used in any 
way to build the learners. This is a necessary condition to assess 
the generalization ability of a learner that is built according to a 
learning scheme, and further to determine whether or not to apply 
the learning scheme, or select one best scheme from the given 
schemes. defect prediction stage, according to the performance 
report of the first stage, a learning scheme is selected and used to 
build a prediction model and predict software defect.

Fig. 2: Frame Work

B. One pass Algorithm for Defect Prediction
ALG Evaluation(historicalData, scheme)
input : historicalData - the historical data;
scheme - the learning scheme.
output: AvgResult - the mean performance over the M×N-way 
cross-validation.

1 M = 10 ; /*number of repetitions */
2 N = 10 ; /*number of folds */
3 repeat
4 D = Randomize (historicalData); /*randomize the order of 
instances */
5 Generate N bins from D ;
6 for i = 1 to N do
7 test = bin[i];
8 train = D − test ;
9 [learner, bestAttrs ] = Learning (train, scheme);
10 test’ = select bestAttrs from test ;
11 Result = TestClassifier (test’, learner);
/*Compute the performance measures of the learner on data test’ 
*/
12 end
13 until M times ;
AvgResult = 1/M×N
14 Result ;

Algorithm Learning(data, scheme)
input : data - the data on which the learner is built;
scheme - the learning scheme.
output: learner - the final learner built on data with scheme;
bestAttrs - the best attribute subset selected by the attribute selector 
of scheme

1 m = 10 ; /*number of repetitions for attribute selection */
2 n = 10 ; /*number of folds for attribute selection */
3 d = Preprocessing (data, scheme.preprocessor);
4 bestAttrs = AttrSelect (d, scheme.algorithm, scheme.attrSelector, 
m, n);
5 d’ = select bestAttrs from d ;
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6 learner = BuildClassifier (d’, scheme.algorithm);
/*build a classifier on d’ with the learning algorithm of scheme 
*/

Algorithm Prediction(historicalData, newData, scheme)
input : historicalData - the historical data; newData - the new 
data;
scheme - the learning scheme.
output: Result - the predicted result for the newData

1 [predictor, bestAttrs ] = Learning (historicalData, scheme);
2 d = select bestAttrs from newData;
3 Result = Predict (d, predictor);
 The above functional parts of algorithms describe the generic 
representations of solutions for predicting defects. In order to 
generate rules to the following algorithm for one pass frequent 
pattern mining algorithm is required.

Algorithm MFI-TransSW
Input: TDS (a transaction data stream), s (a user-defined minimum 
support threshold in the range of
[0, 1]), and w (the user-specified sliding window size).
Output: a set of frequent itemsets, FI-Output.
Begin
TransSW = NULL; /* TransSW consists of w transactions */
Repeat:
for each incoming transaction Ti in TransSW do
for each item X in Ti do
Do bit-sequence transform(X);
end for
if TransSW = FULL then
Do bitwise-shift on bit-sequences of all items in TransSW;
end if
end for
for each bit-sequence Bit(X) in TransSW do
if sup(X) = 0 then
Drop X from TransSW;
end if
end for
/* The following is the frequent itemsets generation phase. The 
phase is performed only when requested by
users. */
FI1 = {frequent 1-itemsets};
for (k=2; FIk−1≠NULL; k++) do
CIk = CIGA(FIk−1);
Do bitwise AND to find the supports of CIk;
for each candidate ck ∈CIk do
if sup(ck)TransSW ≥w⋅s then
FIk = {ck ∈CIk | sup(ck)TransSW ≥w⋅s};
end if
end for
end for
FI-Output = kFIk;
In the above algorithm three stages calculations have to 
perform

initialization phase•	
window full phase•	
frequent pattern finding phase. First phase of algorithm store •	
each transaction that arrive .second phase store incoming 
transaction  remove the old transaction. finally it compute 
frequent patterns with in threshold. 

V. Results

Fig. 3: Differences Existing and Proposed Frame Works  
 
The above fig.  shows the balance diff s of the two frameworks on 
the 17 data sets. From Fig.  observe that (1) For MGF framework, 
the alance diff values are always positive except for the KC1 data. 
This means the evaluation performance of MGF framework is 
always higher than the prediction performance.This reveals they 
overestimated the performance and the result they reported in [23] 
may be misleading. (2) For the proposed framework, the balance 
diff values are always negative except for the JM1 and PC5 data 
are zero, and MC1 and AR6 data are positive. This reveals that 
our evaluation is a little conservative. The potential reason is that 
the training data used for learner building in the evaluation is 
just 90% of the ‘historical’ data, while the final predictor is built 
on the whole ‘historical’ data. That is, the final predictor is built 
with more sufficiency data than the learner built in the evaluation, 
hence has a higher balance on average.

VI. Conclusion 
This paper, presented a novel benchmark framework for software 
defect prediction. The framework involves evaluation and 
prediction. In the evaluation stage, different learning schemes 
are evaluated and the best one is selected. Then in the prediction 
stage, the best learning scheme is used to build a predictor with 
all This article has been accepted for publication in a future issue 
of this journal, but has not been fully edited. Content may change 
prior to final publication. historical data and the predictor is finally 
used to predict defect on the new data.
This paper described frame work to produce software defects from 
the historical database and also presented one pass data mining 
algorithm used to find rules to predict software defects.
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