
IJCST Vol. 3, Issue 3, July - Sept 2012

w w w . i j c s t . c o m International Journal of Computer Science And Technology   637

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

Software Defect Prediction Using One Pass Data
Mining Algorithm

1Subrahmanyam. G. K, 2P. Nanna Babu
1,2Dept. of CSE, Sri Aditya Institute of Technology, India

Abstract
 Software Testing Consumes major percentage of project cost, so
researchers focus is “How to minimizes cost of testing in order to
minimize the cost of the project”. The Software defect prediction
is a method which predict defect from historical database. Data
mining Techniques are used to predict Software defects from
historical databases. This paper describes frame work to produce
software defects from the historical database and also present one
pass data mining algorithm used to find rules to predict software
defects. The experimental results shows that, one pass algorithm
generate rules for software defect prediction with consider amount
of time and with better performance.

Keywords
Software, Testing, Defect, Data Mining

I. Introduction
Software testing is an investigation conducted to provide
stakeholders with information about the quality of the product
or service under test. A set of activities conducted with the intent
of finding errors in software. Testing is a process used to help
identify the correctness, completeness and quality of developed
computer software. A Software Defect / Bug is a condition in a
software product which does not meet a software requirement (as
stated in the requirement specifications) or end-user expectations
(which may not be specified but are reasonable). In other words,
a defect is an error in coding or logic that causes a program to
malfunction or to produce incorrect/unexpected results. Current
defect prediction work focuses on (i) estimating the number of
defects remaining in software systems, (ii) discovering defect
associations, and (iii) classifying the defect-proneness of software
components, typically into two classes defect-prone and not defect-
prone. The second type of work borrows association rule mining
algorithms from the data mining community to re veal software
defect associations, which can be used for three purposes. The third
type of work classifies software components as defect-prone and
non-defect-prone by means of metric-based classification. Being
able to predict which components are more likely to be defect-
prone supports better targeted testing resources and therefore
improved efficiency.
 Data mining (sometimes called data or knowledge discovery)
is the process of analyzing data from different perspectives and
summarizing it into useful information - information that can be
used to increase revenue, cuts costs, or both. Association rule
mining is to find out association rules that satisfy the predefined
minimum support and confidence from a given database. The
problem is usually decomposed into two sub problems. One is
to find those item sets whose occurrences exceed a predefined
threshold in the database; those item sets are called frequent or
large item sets. The design and study of one-pass algorithms has
a long tradition in many areas of computer science. For example,
they are used in the area of data stream processing, where streams
of huge amounts of data have to be monitored on-the-fly without
prior storing the entire data. But also, e.g., a deterministic finite
automaton on words can be viewed as a (very simple) example of

a one-pass algorithm whose memory size and processing time per
data item is constant, i.e., does not depend on the input size. For
most computational problems, however, the amount of memory
necessary for solving the problem grows with increasing input
size.
The remainder of the paper is organized as follows. Section 2
provides related work. Section 3 describes problem description.
Section 4 is devoted proposed framework and one pass algorithm.
In Section 5 results are documented. Conclusions and consideration
of the significance of this work are given in the final section.

II. Related Work
MGF [1] published a study in this journal in 2007 in which they
compared the performance of two machine learning techniques
(Rule Induction and Na¨ıve Bayes) to predict software components
containing defects. Hall and Holmes [2] concluded that the
forward selection search was well suited to Na¨ıve Bayes but the
backward elimination search is more suitable for C4.5. Cardie [3]
found using a decision tree to select attributes helped the nearest
neighbor algorithm to reduce its prediction error. Kubat et al. [4]
used a decision tree . That is, which attribute subset is more useful
for defect prediction not only depends on the attribute subset itself
but also on the specific data set. This article has been accepted for
publication in a future issue of this journal, but has not been fully
edited. Content may change prior to final publication.Filtering
attributes for use with a Na¨ıve Bayesian classifier and obtained a
similar result. However, Kibler and Aha [5] reported more mixed
results on two medical
Classification tasks. Therefore, before building prediction models,
we should choose the combination of all three of learning algorithm,
data pre-processing and attribute selection method, not merely one
or two of them. Lessmann et al. [6] have also conducted a follow-
up to MGF on defect predictions, providing additional results as
well as suggestions for a methodological framework. However,
they did not perform attribute selection when building prediction
models. Thus this work has wider application.

III. Problem Description
Association rule mining is to find out association rules that
satisfy the predefined minimum support and confidence from a
given database. The problem is usually decomposed into two
subproblems. One is to find those itemsets whose occurrences
exceed a predefined threshold in the database; those itemsets
are called frequent or large itemsets. The second problem is to
generate association rules from those large itemsets with the
constraints of minimal confidence. Suppose one of the large
itemsets is Lk, Lk = {I1, I2, … , Ik}, association rules with this
itemsets are generated in the following way: the first rule is {I1,
I2, … , Ik -1} {Ik}, by checking the confidence this rule can be
determined as interesting or not. Then other rule are generated
by deleting the last items in the antecedent and inserting it to the
consequent, further the confidences of the new rules are checked
to determine the interestingness of them. Those processes iterated
until the antecedent becomes empty. Since the second subproblem
is quite straight forward, most of the researches focus on the first

IJCST Vol. 3, Issue 3, July - Sept 2012 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 638 International Journal of Computer Science And Technology

subproblem.

Fig. 1: Stastics of Defect in Softwares

Let I=I1, I2, … , Im be a set of m distinct attributes, T be transaction
that contains a set of items such that T I, D be a database
with different transaction records Ts. An association rule is an
implication in the form of X Y, where X, Y I are sets of items
called itemsets, and X ∩ Y =∅. X is called antecedent while
Y is called consequent, the rule means X implies Y. There are
two important basic measures for association rules, support(s)
and confidence(c). Since the database is large and users concern
about only those frequently purchased items, usually thresholds of
support and confidence are predefined by users to drop those rules
that are not so interesting or useful. The two thresholds are called
minimal support and minimal confidence respectively. Support(s)
of an association rule is defined as the percentage/fraction of
records that contain X Y to the total number of records in the
database. Suppose the support of an item is 0.1%, it means only
0.1 percent of the transaction contain purchasing of this item.
Confidence of an association rule is defined as the percentage/
fraction of the number of transactions that contain X Y to the
total number of records that contain X. Confidence is a measure
of strength of the association rules, suppose the confidence
of the association rule X Y is 80%, it means that 80% of the
transactions that contain X also contain Y together.

IV. Proposed Solution

A. Frame Work
The framework consists of two components:

Scheme evaluation1.	
Defect prediction. historical data are divided into two 2.	
parts:

A training set for building learners with the given learning
schemes, and a test set for evaluating the performances of the
learners. It is very important that the test data are not used in any
way to build the learners. This is a necessary condition to assess
the generalization ability of a learner that is built according to a
learning scheme, and further to determine whether or not to apply
the learning scheme, or select one best scheme from the given
schemes. defect prediction stage, according to the performance
report of the first stage, a learning scheme is selected and used to
build a prediction model and predict software defect.

Fig. 2: Frame Work

B. One pass Algorithm for Defect Prediction
ALG Evaluation(historicalData, scheme)
input : historicalData - the historical data;
scheme - the learning scheme.
output: AvgResult - the mean performance over the M×N-way
cross-validation.

1 M = 10 ; /*number of repetitions */
2 N = 10 ; /*number of folds */
3 repeat
4 D = Randomize (historicalData); /*randomize the order of
instances */
5 Generate N bins from D ;
6 for i = 1 to N do
7 test = bin[i];
8 train = D − test ;
9 [learner, bestAttrs] = Learning (train, scheme);
10 test’ = select bestAttrs from test ;
11 Result = TestClassifier (test’, learner);
/*Compute the performance measures of the learner on data test’
*/
12 end
13 until M times ;
AvgResult = 1/M×N
14 Result ;

Algorithm Learning(data, scheme)
input : data - the data on which the learner is built;
scheme - the learning scheme.
output: learner - the final learner built on data with scheme;
bestAttrs - the best attribute subset selected by the attribute selector
of scheme

1 m = 10 ; /*number of repetitions for attribute selection */
2 n = 10 ; /*number of folds for attribute selection */
3 d = Preprocessing (data, scheme.preprocessor);
4 bestAttrs = AttrSelect (d, scheme.algorithm, scheme.attrSelector,
m, n);
5 d’ = select bestAttrs from d ;

IJCST Vol. 3, Issue 3, July - Sept 2012

w w w . i j c s t . c o m International Journal of Computer Science And Technology   639

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

6 learner = BuildClassifier (d’, scheme.algorithm);
/*build a classifier on d’ with the learning algorithm of scheme
*/

Algorithm Prediction(historicalData, newData, scheme)
input : historicalData - the historical data; newData - the new
data;
scheme - the learning scheme.
output: Result - the predicted result for the newData

1 [predictor, bestAttrs] = Learning (historicalData, scheme);
2 d = select bestAttrs from newData;
3 Result = Predict (d, predictor);
 The above functional parts of algorithms describe the generic
representations of solutions for predicting defects. In order to
generate rules to the following algorithm for one pass frequent
pattern mining algorithm is required.

Algorithm MFI-TransSW
Input: TDS (a transaction data stream), s (a user-defined minimum
support threshold in the range of
[0, 1]), and w (the user-specified sliding window size).
Output: a set of frequent itemsets, FI-Output.
Begin
TransSW = NULL; /* TransSW consists of w transactions */
Repeat:
for each incoming transaction Ti in TransSW do
for each item X in Ti do
Do bit-sequence transform(X);
end for
if TransSW = FULL then
Do bitwise-shift on bit-sequences of all items in TransSW;
end if
end for
for each bit-sequence Bit(X) in TransSW do
if sup(X) = 0 then
Drop X from TransSW;
end if
end for
/* The following is the frequent itemsets generation phase. The
phase is performed only when requested by
users. */
FI1 = {frequent 1-itemsets};
for (k=2; FIk−1≠NULL; k++) do
CIk = CIGA(FIk−1);
Do bitwise AND to find the supports of CIk;
for each candidate ck ∈CIk do
if sup(ck)TransSW ≥w⋅s then
FIk = {ck ∈CIk | sup(ck)TransSW ≥w⋅s};
end if
end for
end for
FI-Output = kFIk;
In the above algorithm three stages calculations have to
perform

initialization phase•	
window full phase•	
frequent pattern finding phase. First phase of algorithm store •	
each transaction that arrive .second phase store incoming
transaction remove the old transaction. finally it compute
frequent patterns with in threshold.

V. Results

Fig. 3: Differences Existing and Proposed Frame Works

The above fig. shows the balance diff s of the two frameworks on
the 17 data sets. From Fig. observe that (1) For MGF framework,
the alance diff values are always positive except for the KC1 data.
This means the evaluation performance of MGF framework is
always higher than the prediction performance.This reveals they
overestimated the performance and the result they reported in [23]
may be misleading. (2) For the proposed framework, the balance
diff values are always negative except for the JM1 and PC5 data
are zero, and MC1 and AR6 data are positive. This reveals that
our evaluation is a little conservative. The potential reason is that
the training data used for learner building in the evaluation is
just 90% of the ‘historical’ data, while the final predictor is built
on the whole ‘historical’ data. That is, the final predictor is built
with more sufficiency data than the learner built in the evaluation,
hence has a higher balance on average.

VI. Conclusion
This paper, presented a novel benchmark framework for software
defect prediction. The framework involves evaluation and
prediction. In the evaluation stage, different learning schemes
are evaluated and the best one is selected. Then in the prediction
stage, the best learning scheme is used to build a predictor with
all This article has been accepted for publication in a future issue
of this journal, but has not been fully edited. Content may change
prior to final publication. historical data and the predictor is finally
used to predict defect on the new data.
This paper described frame work to produce software defects from
the historical database and also presented one pass data mining
algorithm used to find rules to predict software defects.

References
[1]	 B. T. Compton, C. Withrow,“Prediction and control of ada

software defects”, J. Syst. Softw., Vol. 12, No. 3, pp. 199–207,
1990.

[2]	 J. Munson, T. M. Khoshgoftaar,“Regression modelling
of software quality: empirical investigation”, J. Electron.
Mater., Vol. 19, No. 6, pp. 106–114, 1990.

[3]	 N. B. Ebrahimi,“On the statistical analysis of the number
of errors remaining in a software design document after
inspection”, IEEE Trans. Softw. Eng., Vol. 23, No. 8, pp.
529–532, 1997.

[4]	 S. Vander Wiel, L. Votta,“Assessing software designs using
capture-recapture methods”, IEEE Trans. Softw. Eng., Vol.
19, No. 11, pp. 1045–1054, 1993.

[5]	 P. Runeson, C. Wohlin,“An experimental evaluation of
an experience-based capture-recapturemethod in software
code inspections”, Empirical Softw. Eng., Vol. 3, No. 4, pp.
381–406, 1998.

IJCST Vol. 3, Issue 3, July - Sept 2012 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 640 International Journal of Computer Science And Technology

[6]	 L. C. Briand, K. El Emam, B. G. Freimut, O. Laitenberger,
“A comprehensive evaluation of capture-recapture models
for estimating software defect content”, IEEE Trans. Softw.
Eng., Vol. 26, No. 6, pp. 518–540, 2000.

[7]	 K. El Emam, O. Laitenberger,“Evaluating capture-recapture
models with two inspectors”, IEEE Trans. Softw. Eng., Vol.
27, No. 9, pp. 851–864, 2001.

[8]	 C. Wohlin, P. Runeson,“Defect content estimations from review
data”, in ICSE ’98: Proceedings of the 20th International
Conference on Software engineering. Washington, DC, USA:
IEEE Computer Society, 1998, pp. 400–409.

[9]	 G. Q. Kenney,“Estimating defects in commercial software
during operational use”, IEEE Trans. Reliability, Vol. 42,
No. 1, pp. 107–115, 1993.

[10]	P. F., T. Ragg, R. Schoknecht,“Using machine learning for
estimating the defect content after an inspection”, IEEE
Trans. Softw. Eng., Vol. 30, pp. 17–28, 2004.

[11]	N. E. Fenton, M. Neil,“A critique of software defect prediction
models”, IEEE Trans. Softw. Eng., Vol. 25, No. 5, pp. 675–
689, 1999.

[12]	Q. Song, M. Shepperd, M. Cartwright, C. Mair,“Software
defect association mining and defect correction effort
prediction”, IEEE Trans. Softw. Eng., Vol. 32, No. 2, pp.
69–82, 2006.

[13]	A. Porter, R. Selby,“Empirically guided software development
using metric-based classification trees”, IEEE Software, Vol.
7, pp. 46–54, 1990.

[14]	J. C. Munson, T. M. Khoshgoftaar,“The detection of faultprone
programs”, IEEE Trans. Softw. Eng., Vol. 18, No. 5, pp. 423–
433, 1992.

K SUBRAHMANYAM. GANDROTHU
received his B.TECH degree in CSIT
from JOGINAPALLY BHASKARA
INSTITUTE OF ENGINEERING AND
TECHNOLOGY Moinabad Mandal, Hyd-
75 (affiliated to JNTU Hyderabad) in 2010
and currently he is pursuing M.TECH in
SOFTWARE ENGINEERING from SRI
SAI ADITYA INSTITUTE OF SCIENCE
AND TECHNOLOGY surampalem

E.G.Dist, A.P (affiliated to JNTU Kakinada). At present he is
engaged in “SOFTWARE DEFECT PREDICTION USING ONE
PASS DATAMINING ALGORITHM”. His research interests
include object oriented programming, Data mining, software
quality assurance, semantic web services , and creating user
information solutions by developing , implementing , maintaining
java based components and interfaces.

P.Nanna Babu Received the M.Tech
degree from JNTU-H, Jawaharlal Nehru
Technological University, Hyderabad.
Currently he is working as Associate
Professor in Sri SAi Aditya institute of
science and technology, Surampalem,
Andhra Pradesh, India. He has nine years
of experience in teaching. His research
interests include Data mining, cloud
computing software quality assurance.

