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Abstract
Matrix factorization techniques have been frequently applied in 
information retrieval, computer vision and pattern recognition. 
Among them, Non-negative Matrix Factorization (NMF) has 
received considerable attention due to its psychological and 
physiological interpretation of naturally occurring data whose 
representation may be parts-based in the human brain. On the other 
hand, from the geometric perspective, the data is usually sampled 
from a low dimensional manifold embedded in a high dimensional 
ambient space. One hopes then to find a compact representation 
which uncovers the hidden semantics and simultaneously 
respects the intrinsic geometric structure. This Paper presents 
novel algorithm, called Graph Regularized Non-negative Matrix 
Factorization of image for multimedia Mining (GNMFMM),   In 
GNMFMM, an affinity graph is constructed to encode the image 
for multimedia, and   seek a matrix factorization which respects 
the graph structure.

Keywords
Image, Matrix Factorization, Non-Negitive Matrixfactorization, 
Preprocessing

I. Introduction
The techniques for matrix factorization have become popular 
in recent years for data representation. In many problems in 
information retrieval, computer vision and pattern recognition, 
the input data matrix is of very high dimension. then to find two or 
more lower dimensional matrices whose product provides a good 
approximation to the original one. respects both hidden topics as 
well as geometric structure. In order to discover the hidden topics, 
matrix factorization techniques have been frequently applied   
For example, the canonical algorithm Latent Semantic Indexing 
applies Singular Value Decomposition (SVD) to decompose the 
original data matrix X into a product of three matrices, that is, X 
= USVT. U and V are   orthogonal matrices and S is a diagonal 
matrix. Non-negative Matrix Factorization   have been proposed 
and achieved great success due to its theoretical interpretation 
and practical performance. Previous studies have shown there 
is psychological and physiological evidence for parts-based 
representation in human brain. The non-negative constraints in 
NMF lead to a parts-based representation because it allows only  
additive, not subtractive, combinations. NMF has been shown to be 
superior to SVD in face recognition and document clustering. The 
major disadvantage of NMF is that it fails to consider the intrinsic 
geometric structure in the data. This paper,   aim to discover the 
hidden topics and the intrinsic geometric structure simultaneously.  
propose a novel algorithm called Locality Preserving Non-negative 
Matrix Factorization (LPNMF) for this purpose. For two data 
points, we use KL-divergence to evaluate their similarity on the 
hidden topics. A nearest neighbor graph is constructed to model the 
local manifold structure. If two points are sufficiently close on the 
manifold, then we expect that they have similar representations on 
the hidden topics. Thus, the optimal maps are obtained such that 
the feature values on hidden topics are restricted to be non-negative 
and vary smoothly along the geodesics of the data manifold. We 
also propose an efficient method to solve the optimization problem. 
It is important to note that this work is fundamentally based on 

our previous work GNMF.
 The rest of the paper is organized as follows: Section II, Related 
Work Section III, Problem description. Section IV, Frame Work 
Model. Experimental results are reported in Section V. Section 
VI, concludes the paper.

II. Related Work
Non-negative Matrix Factorization (NMF)  is a matrix factorization 
algorithm that focuses on the analysis of data matrices whose 
elements are nonnegative.  Given a data matrix X = [x1,…,xn] € 
RM×N, each column of X is a sample vector. NMF aims to find two 
non-negative matrices U = [uik] € RM×K and V = [vjk] €  RN×K whose 
product can well approximate the original matrix X.
X ≈ UVT

There are two commonly used cost functions that quantify the 
quality of the approximation. The first one is the square of the 
Euclidean distance between two matrices (the square of the 
Frobenius norm of two matrices difference)

	 Eq.(1)
The second one is the “divergence” between two matrices

	 Eq. (2)
where Y = [yij] = UVT. This cost function is referred to as 
“divergence” of X from Y instead of “distance” between X and 
Y because it is not symmetric. In other words, D(X||Y) ≠ D(Y||X). 
It reduces to the Kullback-Leibler divergence, or relative entropy, 
when  ∑ij  xij= ∑ij  yij  =1so that X and Y can be regarded as 
normalized probability distributions. We will refer O1as F-norm 
formulation and O2 as divergence formulation in the rest of the 
paper. Although the objective function O1  and O2 are convex in 
U only or V only, they are not convex in both variables together. 
Therefore it is unrealistic to expect an algorithm to find the global 
minimum of O1 (or, O2). Lee & Seung presented two iterative 
update algorithms. The algorithm minimizing the objective 
function O1  is as follows:

	 Eq. (3)
The algorithm minimizing the objective function O2 in

		  Eq. (4)
It is proved that the above two algorithms will find local minima 
of the objective functions O1 and O2

III. Problem Description
By using the non-negative constraints, NMF can learn a parts-
based representation. However, NMF performs this learning in the 
Euclidean space. It fails to discover the intrinsic geometrical and 
discriminating structure of the data space, which is essential to the 
real-world applications. In this section, we introduce our Graph 
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regularized Non-negative Matrix Factorization (GNMF) algorithm 
which avoids this limitation by incorporating a geometrically 
based regularizer.

A. NMF with Manifold Regularization
Recall that NMF tries to find a set of basis vectors that can be used 
to best approximate the data. One might further hope that the basis 
vectors can respect the intrinsic Riemannian structure, rather than 
ambient Euclidean structure. A natural assumption here could be 
that if two data points xj , xl are close in the intrinsic geometry 
of the data distribution, then zj and zl, the representations of this 
two points with respect to the new basis, are also close to each 
other. This assumption is usually referred to as local invariance 
assumption \which plays an essential role in the development of 
various kinds of algorithms including dimensionality  reduction 
algorithms and semi-supervised learning algorithms.  Recent 
studies in spectral graph theory and manifold learning theory  have 
demonstrated that the local geometric structure can be effectively 
modeled through
a nearest neighbor graph on a scatter of data points. Consider a 
graph with N vertices where each vertex corresponds to a data 
point. For each data point xj , we find its p nearest neighbors and 
put edges between xj and its neighbors. There are many choices to 
define the weight matrix W on the graph. Given a data matrix X = 
[xij] € RM×N, Our GNMF aims to find two non-negative matrices 
U = [uik] € RM×K and V = [vjk] € RN×K. Similar to NMF, we can 
also use two “distance” measures here. If the Euclidean distance 
is used, GNMF minimizes the objective function as follows:

		  Eq. (5)
If the divergence is used, GNMF minimizes

	 Eq. (6) 

B. Updating Rules Minimizing Eq.(5)
The objective function O1 and O2 of GNMF Eq.(5) and Eq. (6) are 
not convex in both U and V together. Therefore it is unrealistic to 
expect an algorithm to find the global minima. In the following, 
we introduce two iterative algorithms which can achieve local 
minima. We first discuss how to minimize the objective function 
O1, which can be rewritten as

	 Eq. (7)

	 Eq. (8)
The partial derivatives of L with respect to U and V are:

	 Eq. (9)

Using the KKT conditions

We get the following equations for uik and vjk:

	 Eq. (10)
These equations lead to the following updating rules:

			   Eq. (11)

		  Eq. (12)

IV. Frame Work Model
For the objective function of NMF, it is easy to check that if U 
and V are the solution, then, UD, VD−1 will also form a solution 
for any positive diagonal matrix D. To eliminate this uncertainty, 
in practice people will further require that the Euclidean length 
of  each column vector in matrix U (or V) is. The matrix V (or U) 
will be adjusted accordingly so that UVT does not change. Our 
GNMF also adopts this strategy. After the multiplicative updating 
procedure converges, we set the Euclidean length of each column 
vector in matrix U to 1 and adjust the matrix V so that UVT does 
not change.
Now it is clear that the multiplicative updating rules in Eq. (11) and 
Eq. (12) are special cases of gradient descent with an automatic 
step parameter selection. The advantage of multiplicative updating 
rules is the guarantee of non-negativity of U and V. 

Fig. 1: Encoding

Fig. 2: Decoding

V. Results

Fig. 3(a): Image Before Factorization
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Fig. 3(b): Image After Factorization

NMF is very powerful for clustering, especially in the document 
clustering and image clustering tasks. It can achieve similar or 
better performance than most of the state-of-the-art clustering 
algorithms, including the popular spectral clustering methods. 
Assume that a document corpus is comprised of K clusters each 
of which corresponds to a coherent topic. To accurately cluster the 
given document corpus, it is ideal to project the documents into a 
K-dimensional semantic space in which each axis corresponds to 
a particular topic. In this semantic space, each document can be 
represented as a linear combination of the K topics. Because it is 
more natural to consider each document as an additive rather than 
a subtractive mixture of the underlying topics, the combination 
coefficients should all take non-negative values. 
These values can be used to decide the cluster membership. In 
appearance-based visual analysis, an image may be also associated 
with some hidden parts. For example, a face image can be thought 
of as a combination of nose, mouth, eyes, etc. It is also reasonable 
to require the combination coefficients to be non-negative. This 
is the main motivation of applying NMF on document and image 
clustering. In this section, we also evaluate our GNMF algorithm 
on document and image clustering problems.

VI. Conclusion
This paper presented a novel method for matrix factorization, called 
Graph regularized Non-negative Matrix Factorization (GNMF). 
GNMF models the data space as a submanifold embedded in the 
ambient space and performs the non-negative matrix factorization 
on this manifold. As a result, GNMF can have more discriminating 
power than the ordinary NMF approach which only considers 
the Euclidean structure of the data. Experimental results on 
document and image clustering show that GNMF provides a better 
representation in the sense of semantic structure. 
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