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Abstract
We propose a new group-adaptive space bound based on separating 
hyper plane boundaries of Verona groups to complement our group 
based catalog. This bound enables efficient spatial filtering, with a 
relatively small pre-processing storage overhead and is applicable 
to Euclidean and Mahalanobis similarity measures. Experiments in 
exact nearest-neighbour set retrieval, conducted on real data sets, 
show that our cataloguing method is scalable with data set size and 
data lengthily and outperforms several recently proposed cataloges. 
Consider approach for likeness search in interrelated, high-length 
data sets, which are derived within a grouping framework. They 
note that Catalog by “Vector Approximation” (VA-File), 
Which was proposed as a technique to combat the “irritation of 
Lengthily,” employs scalar quantization, and hence necessarily 
ignores dependencies across dimensions, which represents a 
source of sub-optimality? Grouping, on the other hand, exploits 
inter-length correlations and is thus a more compact representation 
of the data set. However, existing methods to prune irrelevant 
groups are based on bounding hyper-spheres and/or bounding 
rectangles, whose lack of tightness compromises their efficiency 
in exact nearest neighbour search. They propose a new group-
adaptive space bound based on separating hyper-plane boundaries 
of Verona groups to complement their group based catalog.
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I. Introduction
During the last decade, multimedia databases have become 
increasingly important in many application areas such as medicine, 
CAD, geography, or molecular biology. An important research issue 
in the field of multimedia databases is the content based retrieval 
of similar multimedia objects such as images, text, and videos. 
However, in contrast to searching data in a relational database, a 
content based retrieval requires the search of similar objects as a 
basic functionality of the database system. Most of the approaches 
addressing similarity search use a so-called feature transformation 
which transforms important properties of the multimedia objects 
into high-length points (feature vectors). Thus, the similarity 
search is transformed into a search of points in the feature space 
which are close to a given query point in the high-length feature 
space. Query processing in high-length spaces has therefore been 
a very active research area over the last few years. A number of 
new catalog structures and algorithms have been proposed. It has 
been shown that the new catalog structures considerably improve 
the performance in querying large multimedia databases.  IDS 
usually focus on detecting attack types, but not on distinguishing 
between different attack instances. 
In addition, even low rates of false alerts could easily result in a 
high total number of false alerts if thousands of network packets 
or log file entries are inspected. As a consequence, the IDS create 
many alerts at a low level of abstraction. It is extremely difficult 
for a human security expert to inspect this flood of alerts, and 
decisions that follow from single alerts might be wrong with a 

relatively high probability. Alerts may originate from low-level 
IDS such as those mentioned above, from firewalls, etc. Alerts 
that belong to one attack instance must be grouped together and 
meta-alerts must be generated for these groups. It is a generative 
modelling approach using probabilistic methods.
Assuming that attack instances can be regarded as random 
processes “producing” alerts, we aim at modelling these processes 
using approximate maximum likelihood parameter estimation 
techniques. Thus, the beginning as well as the completion of attack 
instances can be detected. It is a data stream approach, i.e., each 
observed alert is processed only a few times. Thus, it can be 
applied on-line and under harsh timing constraints. To outline the 
preconditions and objectives of alert aggregation we start with a 
short sketch of our intrusion framework. Then, briefly describe 
the generation of alerts and the alert format. Finally introduce a 
grouping algorithm for off-line alert aggregation which is basically 
a parameter estimation technique for the probabilistic model.

A. Feature-Based Processing Of Similarity
Queries an important aspect of similarity queries is the similarity 
measure. There is no general definition of the similarity measure 
since it depends on the needs of the application and is therefore 
highly application dependent. Any similarity measure, however, 
takes two objects as input parameters and determines a positive 
real number, denoting the similarity of the two objects. In 
defining similarity queries, we have to distinguish between two 
different tasks, which are both important in multimedia database 
applications:  similarity means that we are interested in all objects 
of which the similarity to a given search object is below a given 
threshold e and NN-similarity means that we are only interested 
in the objects which are the most similar ones with respect to the 
search object. Our approach to Catalog real high length data sets. 
We focus on the grouping paradigm for search and retrieval. The 
data set is grouped, so that groups can be retrieved in decreasing 
order of their probability of containing entries relevant to the 
query.

II. Prose Analysis
In order to have an effective similarity search on a high-length 
database where correlated data exists, have to improve or extend 
the conventional grouping methods with different approaches. 
A space based bound approach of adaptive grouping in the high 
length database is implemented. A new group adaptive space bound 
based on separating hyper plane boundaries of Verona groups to 
complement our group based catalog is proposed. Even though the 
hyper plane bounds are better than MBR and MBS bounds, they 
are still loose when compared with the true query-group space 
(i.e., the group space bound can be further tightened). [1] The 
Kmeans algorithm generates the initial centroids randomly and 
fails to consider a spread out placement of them spreading within 
the feature space. In this case, the initial centroids may be placed 
so close together that some become inconsequential. Because of 
this, the initial centroids generated by K-means may be trapped in 
the local optima. A method of placing the initial centroids whereby 
each of them has a farthest accumulated space between them. 
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The proposed algorithm in this paper is inspired by the thought 
process of determining a set of pillars’ locations in order to make 
a stable house or building [3]. Selecting an appropriate space 
measure (or metric) is fundamental to many learning algorithms 
such as k-means, nearest neighbor searches, and others. However, 
choosing such a measure is highly problem specific and ultimately 
dictates the success— or failure of the learning algorithm [4]. A 
very popular and effective technique employed to overcome the 
curse of lengthily is the Vector Approximation File (VA-File). 
In the VA-File, the space is partitioned into a number of hyper-
rectangular cells, which approximate the data that reside inside 
the cells. The non-empty cell locations are encoded into bit strings 
and stored in a separate approximation file, on the hard-disk.
In the search for the nearest neighbors, first, the vector approximation 
file is sequentially scanned and upper and lower bounds on the 
space from the query vector to each cell are estimated. The bonds 
are used to prune the data-set of irrelevant vectors. The final set of 
candidate vectors are then read from the hard disk and the exact 
nearest neighbors are determined. At this point, we note that the 
name “Vector Approximation” is somewhat misleading, since 
what is actually being performed is scalar quantization, where 
each component of the feature vector is separately and uniformly 
quantized.[6] An effective group space bound using hyper plane 
bounds is a grouping approach towards similarity search as an 
alternative to the Vector Approximation (VA) Files. The data set 
is grouped using a standard grouping or vector Quantization (VQ) 
technique, e.g., Kmeans or Lloyd’s algorithm and during query 
processing, load the ”nearest” groups into the main memory. To 
retrieve groups till the kth nearest neighbor discovered so far is 
closer to the query than the remaining groups, this guarantees that 
the k nearest neighbors has been discovered.

III. Existing System
However, existing methods to prune irrelevant groups are based 
on bounding hyper spheres and/or bounding rectangles, whose 
lack of tightness compromises their efficiency in exact nearest 
neighbour search.
Spatial queries, specifically nearest neighbour queries, in high-
length spaces have been studied extensively. While several 
analyses have concluded that the nearest neighbour search, with 
Euclidean space metric, is impractical at high dimensions due to 
the notorious “curse of lengthily”, others have suggested that this 
may be over pessimistic. Specifically, the authors of have shown 
that what Determines the search performance (at least for R-tree-
like structures) is the intrinsic lengthily of the data set and not the 
lengthily of the address space (or the embedding lengthily). We 
extend our space bounding technique to the Mahalanobis space 
metric, and note large gains over existing cataloges.

IV. Proposed System 
In existing system Hyperspheres and hyper rectangles are generally 
not optimal bounding surfaces for groups in high length spaces. 
The Vector Approximation is somewhat confusing, since what 
is actually being performed is scalar quantization, where each 
component of the feature vector is separately and uniformly 
quantized. The performance of the previous approaches got reduced 
by increase in the lengthily of the feature. The preprocessing 
storage required by these approaches is higher.
We propose a new group-adaptive space bound based on separating 
hyper plane boundaries of Verona groups to complement our group 
based catalog. This bound enables efficient spatial filtering, with a 
relatively small pre-processing storage overhead and is applicable 

to Euclidean and Mahalanobis similarity measures. An experiment 
in exact nearest-neighbour set retrieval, conducted on real data-
sets, shows that our Catalog method is scalable with data-set size 
and data lengthily and outperforms several recently proposed 
cataloges.
We note that the Vector Approximation (VA)-file technique 
implicitly assumes independence across dimensions, and that 
each component is uniformly distributed. This is an unrealistic 
assumption for real data-sets that typically exhibit significant 
correlations across dimensions and non-uniform distributions. 
To approach optimality, an Catalog technique must take these 
properties into account. We resort to a Verona grouping framework 
as it can naturally exploit correlations across dimensions (in fact, 
such grouping algorithms are the method of choice in the design 
of vector quantizes). Moreover, we show how our grouping 
procedure can be combined with any other generic grouping 
method of choice (such as BIRCH) requiring only one additional 
scan of the data-set. Lastly, we note that the sequential scan is in 
fact a special case of grouping based catalog i.e. with only one 
group. Several catalog structures exist that facilitate search and 
retrieval of multi-length data. In low length spaces, recursive 
partitioning of the space with hyper-rectangles  hyper-spheres  or 
a combination of hyper-spheres and hyper-rectangles have been 
found to be effective for nearest neighbour search and retrieval. 
While the preceding methods specialize to Euclidean space (l2 
norm), M-trees have been found to be effective for metric spaces 
with arbitrary space functions (which are metrics).
Such multi-length cataloges work well in low length spaces, where 
they outperform sequential scan. But it has been observed that the 
performance degrades with increase in feature dimensions and, 
after a certain dimension threshold, becomes inferior to sequential 
scan. In a celebrated result, Weber et. Al have shown that whenever 
the lengthily is above 10, these methods are outperformed by 
simple sequential scan. Such performance degradation is attributed 
to Bellman’s ‘curse of lengthily’, which refers to the exponential 
growth of hyper-volume with lengthily of the space.

V. Module Description 
A New Group Space Bound•	
Adaptability to Weighted Euclidean or Mahalanobis •	
Spaces 
An Efficient Search Catalog •	
Vector Approximation Files•	
Approximate Similarity Search•	

A. A New Group Space Bound
Key to the success of the grouping-based search strategy is 
efficient bounding of query-group spaces. This is the mechanism 
that allows the elimination of irrelevant groups. Traditionally, 
this has been performed with bounding spheres and rectangles. 
However, hyper spheres and hyper rectangles are generally not 
optimal bounding surfaces for groups in high length spaces. 
In fact, this is a phenomenon observed in the SR-tree, where 
the authors have used a combination spheres and rectangles, to 
outperform cataloges using only bounding spheres (like the SS-
tree) or bounding rectangles (R-tree).
The premise herein is that, at high dimensions, considerable 
improvement in efficiency can be achieved by relaxing restrictions 
on the regularity of bounding surfaces (i.e., spheres or rectangles). 
Specifically, by creating Verona groups, with piecewise-linear 
boundaries, we allow for more general convex polygon structures 
that are able to efficiently bound the group surface. With the 
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construction of Verona groups under the Euclidean space measure, 
this is possible. By projection onto these hyper plane boundaries 
and complementing with the group-hyper plane space, we develop 
an appropriate lower bound on the space of a query to a group.

Fig. 1:

B. Adaptability to Weighted Euclidean or Mahalanobis 
Spaces 
Euclidean space metric is popular within the multimedia Catalog 
community it is by no means the “correct” space measure, in that 
it may be a poor approximation of user perceived similarities. 
The Mahalanobis space measure has more degrees of freedom 
than the Euclidean space and by proper updating (or relevance 
feedback), has been found to be a much better estimator of user 
perceptions and more recently) . We extend our space bounding 
technique to the Mahalanobis space metric, and note large gains 
over existing cataloges.

Fig. 2:

C. An Efficient Search Catalog
The data set is partitioned into multiple Verona groups and for 
any k NN query, the groups are ranked in order of the hyper plane 
bounds and in this way, the irrelevant groups are filtered out. We 
note that the sequential scan is a special case of our Catalog, if 
there were only one group. An important feature of our search 
catalog is that we do not store the hyper plane boundaries (which 
form the faces of the bounding polygons), but rather generate them 

dynamically, from the group centroids. The only storage apart 
from the centroids are the group-hyper plane boundary spaces 
(or the smallest group-hyper plane space). Since our bound is 
relatively tight, our search algorithm is effective in spatial filtering 
of irrelevant groups, resulting in significant performance gains. 

Fig. 3:

We expand on the results and techniques initially presented 
in, with comparison against several recently proposed Catalog 
techniques.

D. Vector Approximation Files
A popular and effective technique to overcome the curse of lengthily 
is the vector approximation file (VA-File). VA-File partitions 
the space into hyper-rectangular cells, to obtain a quantized 
approximation for the data that reside inside the cells. Non-empty 
cell locations are encoded into bit strings and stored in a separate 
approximation file, on the hard-disk. During a nearest neighbour 
search, the vector approximation file is sequentially scanned and 
upper and lower bounds on the space from the query vector to 
each cell are estimated. The bonds are used to prune irrelevant 
cells. The final set of candidate vectors are then read from the 
hard disk and the exact nearest neighbours are determined. At 
this point, we note that the terminology “Vector Approximation” 
is somewhat confusing, since what is actually being performed is 
scalar quantization, where each component of the feature vectors 
separately and uniformly quantized (in contradistinction with 
vector quantization in the signal compression literature).  VA-File 
was followed by several more recent techniques to overcome 
the curse of lengthily. In the VA+-File, the data-set is rotated 
into a set of uncorrelated dimensions, with more approximation 
bits being provided for dimensions with higher variance. The 
approximation cells are adaptively spaced according to the data 
distribution. Methods such as LDR and the recently proposed 
non-linear approximations aim to outperform sequential scan by a 
combination of grouping and lengthily reduction. There also exist 
a few hybrid methods, such as the A-Tree, and IQ-Tree, which 
combine VA-style approximations within a tree based catalog.
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Fig. 4: 

E. Approximate Similarity Search
Lastly, it has been argued that the feature vectors and space 
functions are often only approximations of user perception of 
similarity. Hence, even the results of an exact similarity search 
are inevitably perceptually approximate, with additional rounds 
of query refinement necessary. Conversely, by performing an 
approximate search, for a small penalty in accuracy, considerable 
savings in query processing time would be possible. Examples 
of such search strategies are MMDR probabilistic searches and 
locality sensitive hashing .The reader is directed to for a more 
detailed survey of approximate similarity search. The limits of 
approximate Catalog i.e. the optimal tradeoffs between search 
quality and search time has also been studied within an information 
theoretic framework.

Fig. 5:

VI. Grouping and Catalog Structure
There exist several techniques of grouping the data-set, from the 
fast K-means algorithm (which requires multiple scans of the data-
set) and Generalized Lloyd Algorithm (GLA) [8] to methods such 
as BIRCH [9], which require only a single scan of the data-set. 
The output of any of these algorithms can be a starting point. From 
each of the K groups detected by a generic grouping algorithm, a 
pivot is chosen i.e. K pivot points in all. 

Then the entire data-set is scanned and each data-element is 
mapped to the nearest pivot. Data mapping to the same pivot 
are grouped together to form Verona groups (see Algorithm 1). 
This would lead to slight re-arrangement of groups, but this 
is necessary to retain piecewise linear hyper plane boundaries 
between groups. We believe the centroid is a good choice as a 
pivot. Thus, quick Verona grouping, with possibly only a single 
scan of the entire data-set, can be achieved using any generic 
grouping algorithm. Lastly, also note that any Catalog scheme 
would need at least one scan of the database, which indicates 
that catalog construction times for our scheme are as very close 
to the minimum possible.
We note that the K-means, GLA and BIRCH algorithms are fast 
and can generate reliable estimates of group centroids from sub-
samples of the data-set. Typically, for K groups, even a sub-sample 
of size 100K is sufficient. As we shall see, for the range of groups 
we are considering, this would be overwhelmingly smaller than 
the data-set. Faster catalog construction would be possible by 
allowing for hierarchical and multi-stage grouping. However, 
only the groups at the leaf level are returned. We tested several 
grouping techniques including GLA and BIRCH, and the results 
were largely similar. While it is possible to also optimize the 
grouping itself, that is not our goal in these experiments.

A. Storage Strategy
Elements within the same group are stored together (contiguously). 
We retain the group centroids cm and maintain pointers from 
each centroid to the location of the corresponding group on the 
hard-disk. We also maintain in a separate file the space (bounds) 
of each group from its bounding hyper planes. 

Fig. 6:

We note that the total storage is O(Kd+K2) and O(K(d+1)) real 
numbers, for the full and reduced complexity hyper plane bounds 
respectively, where K is the number of groups. Lastly, note that 
while the elements of each group are stored contiguously, the 
individual groups are stored on different parts of the disk, with 
enough space provided to allow them to grow and shrink.

VII. The KNN Search Algorithm
We now present KNN-SEARCH, our procedure for k-NN search. 
Our algorithm is a branch-and-bound algorithm, and since the 
groups are accessed in order of the lower bounds to the query 
space, it is guaranteed to return the k-nearest neighbors. The main 
search algorithm KNN-SEARCH (see Algorithm 2) calls on four 
functions
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HyperplaneBound(q) - returns lower bounds on the space •	
between query q and all groups, using separating hyper plane 
boundaries (as explained in section V-A).
Sort Array(a[],‘ascend’) - sorts an array a in ascending order •	
and returns the sorted array and sorting “rank” (order).
Farthest(x,A) - returns the space of the element in A furthest •	
from x.
FindkNNsIn(q,A, I) - for query q and initial candidate list I, •	
finds and returns the kNNs in group A, as well the number 
of elements in the group
LoadNextPage (F) - loads a page of a group into main memory •	
(RAM), where F is the pointer to the group file
FindkNN(x,A) - finds the k-nearest neighbors of x in set A.•	

For every query, the processing starts with a call to Hyperplane 
Bound (q). The centroids and the group hyper plane spaces are 
loaded into the main memory. The hyper plane bounds are calculated 
and returned. These lower bounds are sorted in ascending order 
and the groups are correspondingly ranked (line 3). Then, the 
first (nearest) group is scanned from the hard-disk (one page at 
a time2, see Algorithm 3) and the kNNs within this subset of the 

data-set (line 6) are identified. Additionally, dkNN, the space of 
the kth-NN from the query, is evaluated (line 8) and stored in main 
memory. If this space is less than the space of the next closest 
group, then the search ends as the kNNs have been found. In other 
words, this is the stopping condition (line 12). Otherwise, the 
second group is scanned from the disk. The previous estimate of 
the kNNs is merged with the entries of the current group to form 
a new candidate set and the kNNs within this new candidate set 
are evaluated. This search procedure continues till the stopping 
condition is reached or all groups have been searched .

A. Advantages of the Proposed System
The proposed approach performs grouping with exact nearest 
neighbor search. So the search time will be reduced. IO cost will 
reduce because of the less number of random IOs over several 
recently proposed cataloges. Low computational cost and scales 
well with dimensions and size of the data set, by tightening the 
group-space bounds by optimizing the algorithm.

VIII. Conclusion and Future Work
As we are tightening the group-space bounds by optimizing 
the algorithm, the computational cost will be reduced and the 
dimensions and size of the data set can be scaled. Less number 
of random IOs over several recently proposed cataloges. Because 
of the group with exact nearest neighbor search, the search time 
reduces. Possibly by optimizing the grouping algorithm, the query 
group space bounds can be further tightened, so as to optimize 
the group space bounds. Future efforts would be directed toward 
this and other related problems.
Real multilength data-sets exhibit significant correlations and 
non-uniform distributions. Hence, Catalog with the VA-File, 
by performing uniform, scalar quantization, is suboptimal. We 
proposed an Catalog method, based upon principles of vector 
quantization instead, where the data set is partitioned into Verona 
groups and groups are accessed in order of the query-group spaces. 
We developed group space bounds based on separating hyper 
plane boundaries and our search catalog, complemented by these 
bounds, is applicable to Euclidean and Mahalanobis space metrics. 
It obtained significant reductions in number of random IOs over 
several recently proposed cataloges, when allowed (roughly) the 
same number of sequential pages, has a low computational cost 
and scales well with dimensions and size of the data-set. We note 
that while the hyper plane bounds are better than MBR and MBS 
bounds, they are still loose compared with the true query-group 
space (see Figures 6 and 7). Conceivably, the group-space bounds 
can be further tightened, possibly by optimizing the grouping 
algorithm so as to optimize the group space bounds. Future efforts 
would be directed toward this and other related problems.
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