
IJCST Vol. 3, Issue 3, July - Sept 2012 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 578 International Journal of Computer Science And Technology

Top-k keyword search using Skyline Sweeping and
Improved Rank Function

1P. Vardhani, 2S. Uma Maheswara Rao, 3N. Tulasi Raju
1,2,3Dept. of CSE, Swarnandhra College of Engineering and Technology, Narsapur, AP, India

Abstract
Searching keywords in databases is complex task than search in
files. Information Retrieval (IR) process search keywords from
text files and it is very important that queering keyword to the
relational databases. Generally to retrieve data from relational
database Structure Query Language(SQL) can be used to find
relevant records from the database. There is natural demand
for relation database to support effective and efficient IR Style
Keyword queries. This paper describes problem of supporting
effective and efficient top-k keyword search in relational databases
also describe the frame word which takes keywords and K as inputs
and generates top-k relevant records .The results of implemented
system with Skyline Sweeping (S.S) Algorithm shows that it is
one effective and efficient style of keyword search

Keywords
Top-k, Keyword Search, Relational Database, Information
Retrieval

I. Introduction
Internet search engines have popularized keyword based search.
Users submit keywords to the search engine and a ranked list of
documents is returned to the user. A significant amount of the world’s
enterprise data resides in relational databases. It is important that
users be able to seamlessly search and browse information stored
in these databases as well. Searching databases on the internet and
intranet today is primarily enabled by customized web applications
closely tied to the schema of the underlying databases, allowing
users to direct searches in a structured manner. Examples of such
searches within, say a bookseller’s database may be “Books →
Travel → Lonely Planet → Asia”, or “Books → Travel → Rough
Guides → Europe”. With the growth of the World Wide Web,
there has been a rapid increase in the number of users who need
to access online databases without having a detailed knowledge
of schema or query languages; even relatively simple query
languages designed for non-experts are too complicated for such
users. increasing amount of text data stored in relational databases,
there is a demand for RDBMS to support keyword queries over text
data. As a search result is often assembled from multiple relational
tables, traditional IR-style ranking and query evaluation methods
cannot be applied directly. This paper, Describes the effectiveness
and the efficiency issues of answering top-k keyword query in
relational database systems. We propose a new ranking formula
by adapting existing IR techniques based on a natural notion of
virtual document.
The rest of the paper is organized as follows: Section 2 Related
work. Section 3 presents Problem Description Section 4 Frame
works and algorithms optimized for efficient top-k retrieval.
Experimental results are reported in Section 5.Section 6 concludes
the paper.

II. Related Work
The FFF search mechanism at the websites that provides facts and
figures may be augmented by DBXplorer technology. DataSpot
is a commercial system that supports keyword-based searches

by extracting the content of the database into a hyper base. Thus,
this approach duplicates the content of the database, which makes
data integrity and maintenance difficult. Microsoft’s English
Query provides a natural language interface to a SQL database.
DISCOVER has proposed a breadth-first CN enumeration
algorithm that is both sound and complete. The algorithm is
essentially enumerating all sub graphs of size k that does not
violate any pruning rules. The algorithm varies k from 1 to some
search range threshold M. Three pruning rules are used and they
are listed below. issue an SQL query for each CN and union them
to find the top-k results by their relevance scores. DISCOVER2
introduce two alternative query evaluation strategies: sparse
and global pipeline algorithms, both optimized for stopping the
query execution immediately after the true top-k-th result can be
determined

II. System Description
Consider a relational schema R as a set f relations {R1,R2, . . .
,R|R|}. These relations are interconnected at the schema level via
foreign key to primary key references and denote Ri → Rj if Ri
has a set of foreign key attribute(s) referencing Rj ’s primary key
attribute(s), following the convention in drawing relational schema
graphs. For simplicity, we assume all primary key and foreign key
attributes are made of single attribute, and there is at most one
foreign key to primary key relationship between any two relations
and do not impose such limitations in our implementation. A query
Q consists of (1) a set of distinct keywords, i.e., Q = {w1,w2, .
. . ,w|Q|}; and (2) a parameter k indicating that a user is only
interested in top-k results ranked by relevance scores associated
with each result. Ties can be broken arbitrarily. A user can also
specify AND or OR semantics for the query, which mandates that
a result must or may not match all the keywords, respectively.
The default mode is the OR semantics to allow more flexible
result ranking
A result of a top-k keyword query is a tree, T, of tuples, such that
each leaf node of T contains at least one of the query keyword,
and each pair of adjacent tuples in T is connected via a foreign key
to primary key relationship. We call such an answer tree a joined
tuple tree (JTT). The size of a JTT is the number of tuples (i.e.,
nodes) in the tree. Note that we allow two tuples in a JTT to belong
to the same relation. Each JTT belongs to the results produced
by a relational algebra expression — we just replace each tuple
with its relation name and impose a full-text selection condition
on the relation if the tuple is a leaf node. Such relational algebra
expression (or its SQL equivalent) is also termed as Candidate
Network (CN) [16]. Relations in the CN are also called tuple
sets. There are two kinds of tuple sets: those that are constrained
by keyword selection conditions are called non-free tuple sets
(denoted as RQ) and others are called free tuple sets (denoted as
R). Every JTT as an answer to a query has its relevance score,
which, intuitively, indicates how relevant the JTT is to the query.
Conceptually, all JTTs of a query will be sorted according to the
descending order of their scores and only those with top-k highest
scores will be returned.

IJCST Vol. 3, Issue 3, July - Sept 2012

w w w . i j c s t . c o m International Journal of Computer Science And Technology   579

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

IV. Frame Work and Algorithm

Fig. 1:

Sky line Sweeping algorithm designed to minimize the number
of join checking operations, which typically dominates the cost
of the algorithm. This intuition is that if there are two candidates
x and y and the upper bound score of x is higher than that of y, y
should not be checked unless x has been checked. Therefore, we
should arrange all the candidates to be checked according to their
upper bound scores. A na¨ıve strategy is to calculate the upper
bound scores for all the candidates, sort them according to the
upper bound scores, and check them one by one according to this
optimal order. This will incur excessive amount of unnecessary
work, since not all the candidates need to be checked.

Algorithm : Skyline Sweeping Algorithm
1: Q.push((m z }| {1, 1, . . . , 1),
calc uscore((m z }| { 1, 1, . . . , 1)))
2: top-k ←
3: while top-k[k].score < Q.head().uscore do
4: head ← Q.pop max()
5: r ← executeSQL(formQuery(head))
6: if r 6= nil then
7: top-k.insert(r, score(r))
8: for i ← 1 to m do
9: t ← head.dup()
10: t.i ← t.i + 1
11: Q.push(t, calc uscore(t)) {According to Equation (4)}
12: if t.i > 1 then
13: break
14: return top-k

A result list,
top-k, contains no more than k results ordered by the descending real
scores. The main data structure is a priority queue, Q, containing
all the candidates (which are mapped to multi-dimensional points)
according to the descending order of their upper bound scores.
The algorithm also maintains the invariant that the candidate at
the head of the priority queue has the highest upper bound score
among all candidates in the CN. The invariant is maintained by (a)
pushing the candidate formed by the top tuple from all dimensions
into the queue (Line 1), and (b) whenever a candidate is popped
from the queue, its adjacent candidates are pushed into the queue
together with their upper bounds (Lines 8–13). The algorithm stops
when the real score of the current top-k-th result is no smaller than
the upper bound score of the head element of the priority queue;
the latter is exactly the upper bound score of all the unprocessed
candidates.

A. Rank Function

tfw(t) denotes the number of times a keyword w appears in a
database tuple t, dlt denotes the length of the text attribute of
a tuple t, and avdlt is the average length of the text attribute in
the relation which t belongs to (i.e., Rel(t)), NRel(t) denotes the
number of tuples in Rel(t), and dfw(Rel(t)) denotes the number
of tuples in Rel(t) that contain keyword w. The score of a JTT is
the sum of the local scores of every tuple in the JTT.

Fig. 2:

V. Results
The below diagrams represent keyword search results normal as
well as top-3 key word searching hanks 2001.

Table 1: Top-3 Search Results on Our System

 running example (shown in Figures above). In the example, R
= {P,C,U}.1 Foreign key to primary key relationships are: C →
P and C → U. A user wants to retrieve top-3 answer to the query
“maxtor netvista”. Some example JTTs include: c3, c3 → p2, c1
→ p1, c2 → p2, and c2 → p2 ← c3. The first JTT belongs to CN
CQ; the next three JTTs belong to CN CQ → PQ; and the last
JTT belongs to CN CQ → PQ ← CQ. Note that
c3 → u3 is not a valid JTT to the query, as the leaf node u3 does
not contribute to a match to the query. A possible answer for this
top-3 query may be: c3, c3 → p2, and c1 → p1. We believe that
most users will prefer c1 → p1 to c2 → p2, because the former
complaint is really about a IBM Netvista equipped with a Maxtor
disk, and
that it is not certain whether Product p2 mentioned in the latter
JTT is equipped with a Maxtor hard disk or not.

IJCST Vol. 3, Issue 3, July - Sept 2012 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 580 International Journal of Computer Science And Technology

VI. Conclusion
This paper, studied supporting effective and efficient top-k
keyword queries over relational data bases.and proposed a
new ranking method that adapts the state-of-the art IR ranking
function and principles into ranking trees of joined database
tuples. ranking method also has several salient features over
existing ones. We also studied query processing method tailored
for our non-monotonic ranking functions. Two algorithms were
proposed that aggressively minimize database probes. We have
conducted extensive experiments on large-scale real databases.
The experimental results confirmed that our ranking method could
achieve high precision with high efficiency to scale to databases
with tens of millions of tuples.

References
[1]	 S. Agrawal, S. Chaudhuri, G. Das. DBXplorer,"A system for

keyword-based search over relational databases", In ICDE,
pp. 5–16, 2002.

[2]	 H. Bast, D. Majumdar, R. Schenkel, M. Theobald, G.
Weikum,"Io-top-k: Index-access optimized top-k query
processing", In VLDB, pp. 475–486, 2006.

[3]	 G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, S.
Sudarshan,"Keyword searching and browsing in databases
using BANKS", In ICDE, pp. 431–440, 2002.

[4]	 S. B¨orzs¨onyi, D. Kossmann, K. Stocker,"The skyline
operator", In ICDE, pp. 421–430, 2001.

[5]	 K. C.-C. Chang, S. won Hwang,"Minimal probing: supporting
expensive predicates for top-k queries", In SIGMOD, pp.
346–357, 2002.

[6]	 S. Chaudhuri, R. Ramakrishnan, G. Weikum,"Integrating db
and ir technologies: What is the sound of one hand clapping?",
In CIDR, pp. 1–12, 2005.

[7]	 G. Das, D. Gunopulos, N. Koudas, D. Tsirogiannis,
"Answering top-k queries using views", In VLDB, pp.
451–462, 2006.

[8]	 B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, X. Lin,
"Finding top-k min-cost connected trees in databases", In
ICDE, 2007.

[9]	 R. Fagin,"Combining fuzzy information from multiple
systems", J. Comput. Syst. Sci., 58(1), pp. 83–99, 1999.

[10]	R. Fagin, A. Lotem, M. Naor,"Optimal aggregation algorithms
for middleware", In PODS, 2001.

[12]	R. Goldman, N. Shivakumar, S. Venkatasubramanian, H.
Garcia-Molina,"Proximity search in databases. In VLDB,
1998.

[13]	T. Grabs, K. B¨ohm, H.-J. Schek,"Powerdb-ir – information
retrieval on top of a database cluster", In CIKM, pp. 411–418,
2001.

[14]	P. J. Haas, J. M. Hellerstein,"Ripple joins for online
aggregation", In SIGMOD 1999, pp. 287–298, 1999.

[15]	V. Hristidis, L. Gravano, Y. Papakonstantinou,"Efficient IR-
Style Keyword Search over Relational Databases", In VLDB,
2003.

[16]	V. Hristidis, Y. Papakonstantinou,"DISCOVER: Keyword
search in relational databases", In VLDB, pp. 670–681, 2002.
[17]	 I. F. Ilyas, W. G. Aref, A. K.
Elmagarmid,"Supporting top-k join queries in relational
databases", VLDB Journal, 13(3), pp. 207–221, 2004.

[18]	V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai,
H. Karambelkar,"Bidirectional expansion for keyword search
on graph databases", In VLDB, pp. 505–516, 2005.

[19]	B. Kimelfeld, Y. Sagiv,"Efficient engines for keyword
proximity search", In WebDB, pp. 67–72, 2005.

