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Abstract
In the case of small-sized caches, we aim to design a content 
replacement strategy that allows nodes to successfully store newly 
received information while maintaining the good performance of 
the content distribution system.We consider both cases of nodes 
with large- and small-sized caches. We address cooperative 
caching in wireless networks, where the nodes may be mobile 
and exchange information in a peer-to-peer fashion. For large-
sized caches, we devise a strategy where nodes, independent of 
each other, decide whether to cache some content and for how 
long. Under both conditions, each node takes decisions according 
to its per- ception of what nearby users may store in their caches 
and with the aim of differentiating its own cache content from the 
other nodes’. The result is the creation of content diversity within 
the nodes neighborhood so that a requesting user likely finds the 
de- sired information nearby. We simulate our caching algorithms 
in different ad hoc network scenarios and compare them with other 
caching schemes, showing that our solution succeeds in creating 
the desired content diversity, thus leading to a resource-efficient 
information access.

I. Introduction 
Roviding information to users on the move is one of the most 
promising directions of the infotainment business, which rapidly 
becomes a market reality, because infotainment modules are 
deployed on cars and handheld devices. The ubiquity and ease 
of access of third- and fourth-generation (3G or 4G) networks will 
encourage users to constantly look for content that matches their 
interests. However, by exclusively relying on downloading from 
the infrastructure, novel applications such as mobile multimedia 
are likely to overload the wireless network (as recently happened 
to AT&T following the  introduction of  the  iPhone.  It  is  thus  
conceivable that a peer-to-peer system could come in handy, if 
used in conjunction with cellular networks, to promote content 
sharing using ad hoc networking among mobile users. For highly 
popular content, peer-to-peer distribution can, indeed, remove 
bottlenecks by pushing the distribution from the core to the edge 
of the network.
The solution that we propose, called Hamlet, aims at creating 
content diversity within the node neighborhood so that users likely 
find a copy of the different information items nearby (regardless 
of the content popularity level) and avoid flooding the network 
with query messages. Although a similar concept has been put 
forward in , the novelty in our proposal resides in the probabilistic 
estimate, run by each node, of the information presence (i.e., of 
the cached content) in the node proximity.By lever- aging such a 
local estimate, nodes autonomously decide what information to 
keep and for how long, resulting in a distributed scheme that does 
not require additional control messages. The Hamlet approach 
applies to the following cases.

A. Large-Sized Caches
In this case, nodes can potentially store a large portion (i.e., up 
to 50%) of the available information items. Reduced memory 
usage is a desirable (if not required) condition, because the same 

memory may be shared by different services and applications that 
run at nodes. In such a scenario, a caching decision consists of 
computing for how long a given content should be stored by a node 
that has previously requested it, with the goal of minimizing the 
memory usage without affecting the overall information retrieval 
performance;

B. Small-Sized Caches
In this case, nodes have a dedicated but limited amount of memory 
where to store a small percentage (i.e., up to 10%) of the data 
that they retrieve. The caching decision translates into a cache 
replacement strategy that selects the information items to be 
dropped among the information items just received and the infor- 
mation items that already fill up the dedicated memory.
The remainder of this paper is organized as follows. First, we 
discuss the related literature in Section II and outline the system 
characteristics and assumptions in Section III. The simulation 
scenarios considered for the performance evaluation of Hamlet are 
detailed in Section V, whereas the results are presented in Sections 
VI for large- and small-sized caches, respectively.

II. Related Work

A. Cooperative Caching
In , distributed caching strategies for ad hoc networks are presented 
according to which nodes may cache highly popular content that 
passes by or record the data path and use it to redirect future 
requests. Among the schemes presented in [9], the approach called 
Hybrid Cache best matches the operation and system assumptions 
that we consider; Furthermore, the  need  of  a  manual  calibration 
of the “cooperation zone” makes the scheme hard to configure, 
because  different  environments are  considered. Conversely,. 
The latter approach ensures that the density of different content 
is proportional to the content’s popularity at the system steady 
state, thus obeying the square-root rule proposed in  for wired 
networks. We point out that the square-root rule does not consider 
where copies of the data are located but only how many copies 
are created. It is thus insufficient in network environments whose 
dynamism makes the positioning of content of fundamental 
importance and renders steady-state conditions (as assumed 
in)  hard to be achieved. Several papers have addressed content 
caching and content replacement in wireless networks. In the 
following sections, we review the works that are most related to 
this paper, highlighting the differences with respect to the Hamlet 
framework that we propose.

B. Content Diversity
Similar to Hamlet, in , mobile nodes cache data items other than 
their neighbors to improve data accessibility. In particular, the 
solution in  aims at caching copies of the same content farther 
than a given number of hops.. The concept of caching different 
content within a neighborhood is also exploited in , where nodes 
with similar interests and mobility patterns are grouped together 
to improve the cache hit rate, and in , where neighboring mobile 
nodes implement a cooperative cache replacement strategy. In 
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both works, the caching management is based on instantaneous 
feedback from the neighboring nodes, which requires additional 
messages. The estimation of the content presence that we propose, 
instead, avoids such communication overhead.

C. Caching With Limited Storage Capability
In the presence of small-sized caches, a cache replacement 
technique needs to be implemented. Aside from the scheme 
in,  centralized and distributed solutions to the cache placement 
problem, which aim at minimizing data access costs when network 
nodes have limited storage capacity, are presented in. which, in 
mobile networks, need to be maintained similar to routing tables.
as well as link-layer traffic monitoring to trigger prefetching and 
caching. In , the popularity of content is taken into account, along 
with its update rate, so that items that are more frequently updated 
are more likely to be discarded. Similarly, in , cache replace- 
ment is driven by several factors, including access probability, 
update frequency, and retrieval delay. These solutions thus jointly 
address cache replacement and consistency, whereas in this paper, 
we specifically target the former issue. as will be pointed out, 
Hamlet can easily be coupled with a dedicated cache consistency 
scheme.

D. Data Replication
Although addressing a different problem, some approaches to 
data replication are relevant to the data caching solution that 
we propose. One technique of eliminating information replicas 
among neighboring nodes is introduced in [21], which, unlike 
Hamlet, requires knowledge of the information access frequency 
and periodic transmission of control messages to coordinate the 
nodes’ caching decisions. In [5], the authors propose a replication 
scheme that aims at having every node close to a copy of the 
information and analyze its convergence time.

III. System Outline and Assumptions 
Hamlet is a fully distributed caching strategy for wireless ad hoc 
networks whose nodes exchange information items in a peer-to-
peer fashion. cache desired information items.We assume a content 
distribution system where the following assumptions hold:

A  number I of  information items  is available to the users, •	
with each item divided into a number C of chunks
User nodes can overhear queries for content and relative •	
responses within their radio proximity by exploiting the 
broadcast nature of the wireless medium
User nodes can estimate their distance in hops from the query •	
source and the responding node due to a hop-count field in 
the messages.

We detail the features of the specific content retrieval system 
that we will consider in the remainder of this paper.If a node 
receives a fresh query that contains a request for information 
i’s  chunks and it caches a copy of one or more of the requested 
chunks, Once created, an information message is sent back to 
the query source. To avoid a proliferation of information copies 
along the path, the only node that is entitled to cache a new copy 
of the information is the node that issued the query. Information 
messages are transmitted back to the source of the request in a 
unicast fashion, along the same path from which the request came.
Nodes along the way either act as relays for transit messages (if 
they belong to the backtracking node sequence) or simply overhear 
their transmission without relaying them. Fig. 1(b) depicts the 
flowchart of the operations at a node that receives a message that 
contains an information chunk.

Fig. 1: Flowcharts of the Processing of (a) Query and (b) Information 
Messages at User Nodes. We Denote the Address of the Node that 
Generated the Query as asrc , the Query Identifier as id, the Address 
of the Last Node that Forwarded the Query Message as Alast, and 
the set of Queried Chunks as c. The Functional Blocks that are 
the Focus of this Paper are Highlighted in (b).

A node that receives the requested information has the option to 
cache the received content and thus become a provider for that 
content to the other nodes. Determining a strategy of taking such 
caching decisions is the main objective of this paper, and as such, 
the corresponding decision blocks are highlighted in Fig. 1(b).
We point out that Hamlet exploits the observation of query and 
information messages that are sent on the wireless channel as 
part of the operations of the content-sharing application, e.g., the 
previously outlined approach. As a consequence, Hamlet does not 
introduce any signaling overhead.

Mitigated flooding. This approach limits the propagation •	
range of a request by forcing a time to live (TT L) for the query 
messages. In addition, it avoids the forwarding of already-
solved requests by making the nodes wait for a query lag 
time before rebroadcasting a query;
Eureka [23]. This approach extends mitigated flooding by •	
steering queries toward areas of the network where the 
required information is estimated to be denser.

Note that this paper focuses on cooperative caching and we do 
not tackle information consistency; thus, we do not take into 
account different versions of the content in the system model. 
We note, however, that the previous version of this paper [24] 
jointly evaluated Hamlet with a basic scheme for weak cache 
consistency based on an epidemic diffusion of an updated cache 
content and we showed that weak consistency can be reached, 
even with such a simple approach, with latencies on the order of 
minutes for large networks. If prompter solutions are sought,In 
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the case of Hamlet, a push technique can be implemented through 
the addition of invalidation messages broadcast by gateway nodes, 
whereas information providers can pull an updated content (or 
verify its freshness) before sending the information to querying 
nodes. In either case, no major modification of the Hamlet caching 
scheme is required: the only tweaking can consist of resetting 
the estimation of the information presence upon the notification/
detection of an updated version to ease the diffusion of the new 
information.

IV. Hamlet Framework
The Hamlet framework allows wireless users to take caching 
decisions on content that they have retrieved from the network. 
The process that we devise allows users to take such deci- sions 
by leveraging a node’s local observation, i.e., the node’s ability 
to overhear queries and information messages on the wireless 
channel. In particular, for each information item, a node records 
the distance (in hops) of the node that issues the query, i.e., where 
a copy of the content is likely to be stored, and the distance of the 
node that provides the information. Based on such observations, 
the node computes an index of the information presence in its 
proximity for each of the I items. Then, as the node retrieves 
content that it requested, it uses the presence index of such an 
information item to determine whether a copy of the content should 
be cached, for how long, and possibly which content it should 
replace. By doing so, a node takes caching decisions that favor 
high content diversity in its surroundings, inherently easing the 
retrieval of data in the network.

Fig. 2: Q and P Denote, Respectively, a Node that Issues a Query 
and a Node that Provides the Requested Content. Node R in 
the Lower Plot is a Relay Node, Overhearing the Exchanged 
Messages. The Upper and Lower Plots, Respectively, Represent 
the Case 1 hQ  Value for the Provider Node P and the Case 2 hQ  
and hP Values for the Relay Node R with Respect to the Query 
Source Q and the Provider P.

whether a copy of the content should be cached, for how long, 
and possibly which content it should replace. By doing so, a 
node takes caching decisions that favor high content diversity 
in its surroundings, inherently easing the retrieval of data in the 
network. 
In the following sections, we first detail how a node estimates 
the presence of information chunks in its proximity. Next, we 
separately describe the role of the information presence index in 
caching decisions for nodes with large- and small-sized caches. 
In the former case, the information presence index determines the 
cache content drop time, whereas in the latter case, it drives the 
cache content replacement.

A. Information Presence Estimation
We define the reach range of a generic node n as its distance from 
the farthest node that can receive a query generated by node n 
itself. Next, we denote by f the frequency at which every node 
estimates the presence of each information item within its reach 
range, and we define as 1/f  the duration of each estimation step 
(also called time step hereafter).
A node n uses the information that was captured within its 
reach range during time step j to compute the following two 
quantities:

 A provider counter by using application-layer data1.	
A transit counter by using data that were collected through 2.	
channel overhearing in a cross-layer fashion. These counters 
are defined as follows.
Provider counter dic (n, j).  This  quantity accounts for the •	
presence of new copies of information i’s  chunk c, delivered 
by n to querying nodes within its reach range, during step j. 
Node n updates this quantity every time it acts as a provider 
node (e.g., node P in the upper plot of Fig. 2).
Transit counter ric (n, j).  This quantity accounts for the •	
presence of new copies of information i’s chunk c, trans- 
ferred between two nodes within n’s  reach range and received 
(or overheard) by n, during step j. Node n thus updates 
this quantity if it receives (or overhears) an infor- mation 
message,1 e.g., node R in the lower plot of Fig. 2; thus, the 
transit counter is the only data structure that needs cross-layer 
access, i.e., the number of information copies whose transit 
the node has overheard at lower layers (and subsequently 
inspected).

The provider and transit counters are updated through the hop 
count information that is included in the query and information 
message header. The exact procedure is as detailed follows:
1. If node n generates a reply information message that contains 
chunks of information item i, as an answer to a query for some 
chunk c that it owns, then a new copy of such chunks is possibly 
cached at the node that generated the query. Node n must therefore 
account for the presence of such a new copy at a distance hQ 
, which is equal to the number of hops that were covered by 
the query (see the upper plot of Fig. 2). The provider counter is 
updated by a quantity that is inversely proportional to the distance 
hQ as follows:
Based on the aforementioned quantities, node n can compute a 
presence index of chunk c of information i, as observed during 
step j within node n’s reach range. We refer to such a value as pic 
(n, j) and define it as
pic (n, j) = min {1, dic (n, j)+ ric (n, j)}.		  (1)
According to (4), pic (n, j) comprises the range [0, 1]. A zero-value 
means that the presence of chunk c of information i was not sensed 
by n during time step j. Instead, if the chunk is cached one hop 
away from n, pic (n, j) is equal to one; this case is the “best,” where 
the chunk would directly be available to n if needed. Intermediate 
values between 0 and 1 are recorded when n observes chunks that 
are cached more than one hop away. Note that multiple contributions 
of the last kind can sum up to a maximum information presence 
pic (n, j) = 1, because we rate the dense presence of chunks a few 
hops away as valuable as a single chunk at a one-hop distance. 
The information presence index thus computed plays a crucial 
role in taking caching decisions in both large- and small-sized 
caches, as described in the next sections.
Note that the larger the hQ , i.e., the farthest the new chunk copy, 
the lesser the added contribution.
2. If node n receives or overhears a new transit information 
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i message, which contains a chunk c whose query status was 
pending, it must then account for the presence of the following 
copies: 1) a new copy of the chunk that will be cached by a node 
at a distance of hQ  hops and 2) an existing copy that is cached at 
a distance of hP  hops (see Fig. 2, lower plot). Thus, following the 
approach in (1), the transit counter is updated as follows:

B. Large-Sized Caches: Computation of the Content Drop 
Time
We first consider the case in which nodes have a large-sized 
cache, enough to potentially store a large portion (i.e., 50% or 
more) of the content that they request. Thus, here, we exploit 
the aforementioned information presence estimate to determine 
a cache drop time after which We denote by χi (n, j)  the cache 
drop time that node n
computes at the end of time step j for information item i. Such 
a
drop time applies to all chunks, belonging to information item i, 
that will be received during time step (j + 1). To compute χi (n, j), 
node n estimates an overall probability of information presence, 
by composing the presence indices pic (n, j)  of all chunks of 
information i, as follows.
Because pic (n, j) are samples of the chunk presence, node n first 
needs to quantify the amount of time for which these samples 
are meaningful. If all nodes run Hamlet, the best guess that node 
n can take to determine the presence index is to use its local 
estimate of the cache drop time χi (n, j − 1), assuming that it is not 
very different from its neighbors’. Consistent with this reasoning, 
the contribution of a presence index computed at step k should 
only be considered for a time χi (n, k − 1). However, discarding 
contributions exactly after a time χi (n, k − 1) leads to an ON/OFF  
behavior and yields discontinuities in the caching decision process. 
Moreover, a hard contribution removal threshold is inconsistent 
with the uncertainty in the knowledge of the neighbors’ caching 
times; the value χi (n, k − 1) used by node n may differ from the 
cache drop time computed by the nodes within n’s reach range, 
particularly if they are several hops away.

Fig. 3: Filter Impulse Responses wi (n, k, j) for Different Values of 
χi (n, k −1), where k = 1, α = 0.9, and W = 0.5. For k = 1, the Time 
Axis Marks the Time Steps Since the Chunk has Been Cached.

To account for these factors, we smooth the contributions through 
an ad hoc filter. At time step j (whose duration is 1/f ), node n 
weighs each past index pic (n, k), k < j by a smoothing factor wi 
(n, k, j), which is defined as

C. Small-Sized Caches: Content Replacement
When equipped with a small-sized cache, nodes cannot store all 
content that they request but are forced to choose which items to 
keep and which items to discard every time newly retrieved data 
fill up their memory. In this case, computing cache drop times 

is clearly not a solution, because the lingering of items in cache 
is primarily determined by the rate of reception of new content. 
Therefore, in the presence of limited dedicated storage resources, 
we exploit the information presence estimate to define a content 
replacement policy that favors a balanced distribution of data 
over the network so that all content is as “close” as possible to a 
requesting node.
The rationale of our content replacement strategy is very similar 
to the approach employed for the cache drop time computation. 
Again, we start by identifying the amount of time for which 
the index pic (n, j)  must be considered valid and define a new 
smoothing factor wˆi (n, k, j) to that end as whose details will be 
discussed at the end of this section, for clarity.
We can thereafter define the completeness of item i, estimated by 
node n from samples observed at time step k, as

????????????  Eq. is Missing   ?????????

and the overall presence index as 

			   (3)
With respect to  the  equivalent formulation for the case of large-
sized caches in (7), the index in (11) is not bounded by 1. Indeed, 
pˆi (n, j)  is an estimate of the total amount of information i in the 
reach range of node n at time step j.
We thus leverage pˆi (n, j) as the metric for a content replace- ment 
strategy. Upon the reception, at time step j, of new data to be 
cached and exceeding the free storage memory, node n discards 
chunks3  of information i associated with the highest pˆi (n, j) 
until the remaining data fit the storage constraints. In other words, 
each node tries to keep content that is estimated to be rarer in its 
surroundings while dropping data that are evaluated to be already 
commonly available in the area.
How we can compute the estimated caching time χˆi (n, k) remains 
to be defined. To this end, the best guess that a node can take is 
to assume that users in its neighborhood attribute similar caching 
priorities to the information items, i.e., the ordering of
pˆi (n, k), 

A

i, that they compute is in agreement with the ordering 
of the node. Under this assumption, a node n can estimate the 
amount of time for which a neighboring user will cache a newly 
received chunk of item i to be inversely proportional to the pˆi 
(n, k) that it has locally computed. As aforementioned, we define 
a maximum cache permanence time MC, after which, a chunk is 
discarded to avoid stored information from becoming stale and 
node movement from leading to inconsistencies with respect to 
previous information presence ratings. The estimated caching 
time is then computed as

To provide an interpretation for (12), consider the case of chunks 
of the most common information item in the area. Because, as 
aforementioned, a node discards a chunk of in- formation i 
associated with the highest pˆi (n, j), the estimated caching time 
for such a chunk is set to 0 in (12), and caching times of much 
less popular chunks are, instead, estimated to be much longer 
(up to MC).
As the estimated presence decreases, the chance that chunks 
find space in the cache of requesting nodes grows, reaching 
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the maximum estimated caching time MC if the information is 
completely absent from the area, i.e., when pˆi (n, j) = 0.
Note that (12) does not depend on the content query rate as a 
precise design choice. Indeed, it is not likely that a node knows the 
frequency of requests that were generated for each information item 
by the different users in the network and assuming such knowledge 
would noticeably limit the feasibility of the solution.

Fig. 4: Simulation Scenarios: City (Left) and Mall (Right)

The performance evaluation that we conducted shows that the lack 
of query rate awareness does not prevent Hamlet from achieving 
its goals.

V. Simulation Scenarios and Metrics
We tested the performance of Hamlet through ns2 simula- tions 
under the following three different wireless scenarios:
1) a network of vehicles that travel in a city section (referred to as 
City); 2) a network of portable devices carried by customers who 
walk in a mall (Mall); and 3) a network of densely and randomly 
deployed nodes with memory limitations (memory- constrained 
nodes). The three scenarios are characterized by different levels 
of node mobility and network connectivity.
In the City scenario, as depicted in Fig. 4, vehicle movement 
is modeled by the intelligent driver model with intersection 
management (IDM-IM), which takes into account car-to-car 
interactions and stop signs or traffic lights [27]. We simulated a  
rather  sparse  traffic, with  an  average  vehicle  density  of 15 
veh/km over a neighborhood of 6.25 km2 . The mobility model 
settings, forcing vehicles to stop and queue at inter- sections, led to 
an average vehicle speed of about 7 m/s (i.e., 25 km/h). We set the 
radio range to 100 m in the vehicular scenario, and by analyzing 
the network topology during the simulations, we observed an 
average link duration of 24.7 s and a mean of 45 disconnected 
node clusters concurrently present over the road topology. The 
City scenario is thus characterized by scattered connectivity and 
high node mobility. The  Mall  scenario  is  represented  in  Fig.  
4  as  a  large L-shaped open space of 400 m of length on the long 
side, where pedestrian users can freely walk. In this scenario, we 
record an average of 128 users who walk at an average speed of
0.5 m/s according to the random-direction mobility model with 
reflections [28]. The node radio range is set to 25 m, leading to an 
average link duration equal to 43 s, with a mean of ten disconnected 
clusters of users present at the same time in the network. The 
connectivity level in the Mall is thus significantly higher than in 
the City, whereas node mobility is much lower.
The  memory-constrained scenario  is  similar  to  the  sce- nario 
employed for the performance evaluation of the cache replacement 
schemes in [9] and [14]. It is composed of 300 wireless nodes 
deployed over a square area of a side equal to 200 m. Nodes can 

be static, positioned according to a uniform random distribution, 
or mobile, wandering according to a random-direction mobility 
model with reflections. The node speed is uniformly distributed 
in the range [0.5vm , 1.5vm ], where vm  is the average node 
speed—a varying parameter in our simulations. The node radio 
range is set to 20 m, resulting, for static nodes, in a fully connected 
network.
In all the scenarios, we deploy two fixed gateway nodes at opposite 
ends of the topology. Each gateway permanently stores 1/2 of the 
information items, whereas the other half is provided by the other 
gateway. Initially, nodes have an empty cache; they randomly 
request any among the I items that are not in their cache according 
to a Poisson process with parameter λi  = Λqi  (1 ≤ i ≤ I ). Λ 
is the query generation rate per node, whereas qi   represents 
the content popularity level (i.e., the probability that, among all 
possible content, a node requests item i). The TTL value for query 
messages is set to ten and five hops for the case of large- and 
small-sized caches, respectively, and the query lag time is 50 ms. 
Note that the impact of all the aforementioned query propagation 
parameters on the information-sharing behavior has been studied 
in [23]; here, we only consider what has been identified as a good 
parameter setting.
With regard to the Hamlet parameters, the estimation fre- quency 
is such that 1/f = 0.2MC ; indeed, through extensive simulations, 
we observed that the impact of f is negligible, as long as 1/f  is 
not greater than 20% of the maximum caching time. As we fix τ 
= f MC , this setting of f leads to a value of τ as small as 5. Then, 
we have α = 0.9 and W = 0.5; indeed, we have verified that this 
combination yields a smoother behavior of the presence index 
pi (n, j).  The values of the remaining parameters are separately 
specified for large- and small-sized caches.
The information-sharing application lies on top of a User 
Datagram  Protocol  (UDP)-like transport  protocol,  whereas, at 
the media access control (MAC) layer, the IEEE 802.11 standard 
in the promiscuous mode is employed. No routing algorithm is 
implemented: queries use a MAC-layer broadcast transmission, 
and information messages find their way back to the requesting 
node following a unicast path. Information messages exploit the 
request to send/clear to send (RTS/CTS) mechanism and MAC-
level retransmissions, whereas query messages of broadcast nature 
do not use RTS/CTS and are never retransmitted. The channel 
operates at 11 Mb/s, and signal propagation is reproduced by a 
two-ray ground model. Simulations were run for 10 000 s.
In the aforementioned scenarios, our performance evaluation 
hinges upon the following quite-comprehensive set of metrics 
that are aimed at highlighting the benefits of using Hamlet in a 
distributed scenario:

The ratio between solved and generated queries, called 1.	
solved-queries ratio;
The communication overhead;2.	
The time needed to solve a query;3.	
The cache occupancy.4.	

We have further recorded the spatiotemporal distribution of 
information and the statistics of information survival, because 
they help in quantifying the effectiveness of Hamlet in preserv- 
ing access to volatile information. As aforementioned, we did not 
explore the problem of cache consistency, because such an issue 
is orthogonal to this paper.

VI. Evaluation with Large - Sized Caches
Here, we evaluate the performance of Hamlet in a network of nodes 
with large storage capabilities, i.e., with caches that can store up 
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to 50% of all information items. Because such characteristics are 
most likely found in vehicular communication devices, tablets, or 
smartphones, the network environments under study are the City 
and Mall scenarios. As discussed in Section IV, in this case, the 
Hamlet framework is employed to compute the caching time for 
information chunks retrieved by nodes, with the goal of improving 
the content distribution in the network while keeping the resource 
consumption low.
We first compare Hamlet’s performance to the results obtained 
with a deterministic caching strategy, called DetCache, which 
simply drops cached chunks after a fixed amount of time. Then, 
we demonstrate the effectiveness of Hamlet in the specific task 
of information survival. In all tests, we assume I = 10 items, each 
comprising C = 30 chunks. All items have identical popularity, 
i.e., all items are requested with the same rate λ = Λ/I by all 
network nodes. The choice of equal request rates derives from 
the observation that, in the presence of nodes with a large-sized 
memory, caching an information item does not imply discarding 
another information item; thus, the caching dynamics of the 
different items are independent of each other and only depend 
on the absolute value of the query rate. It follows that considering 
a larger set of items would not change the results but only lead to 
more time-consuming simulations.
Each query includes 20 B plus 1 B for each chunk request, whereas 
information messages include a 20-B header and carry a 1024-B 
information chunk. The maximum caching time MC is set to 100 s, 
unless otherwise specified. Queries for chunks that are still missing 
are periodically issued every 5 s until either the information is 
fully retrieved or a timeout that is set to 25 s expires.

A. Benchmarking Hamlet
We set the deterministic caching time in DetCache to 40 s, and 
we couple DetCache and Hamlet with both the mitigated flooding 
and Eureka techniques for query propagation. We are interested 
in the following two fundamental metrics: 1) the ratio of queries 
that were successfully solved by the system and 2) the amount of 
query traffic that was generated. The latter metric, in particular, 
provides an indication of the system effectiveness in preserving 
locally rich information content: if queries hit upon the sought 
information in one or two hops, then the query traffic is obviously 
low. However, whether such a wealth of information is the result 
of a resource-inefficient cache-all-you-see strategy or a sensible 
cooperative strategy, e.g., the approach fostered by Hamlet, 
remains to be seen. Thus, additional metrics that are related to 
cache occupancy and information cache drop time must be coupled 
with the aforementioned metrics.
Fig. 5 shows the solved-queries ratio (top plot) and the amount 
of query traffic (bottom plot) as λ varies in the City scenario. 
When DetCache is used, the higher the query rate, the larger 
the number of nodes that cache an information item. This case 
implies that content can be retrieved with higher probability 
and also that it is likely to be found in the proximity of the 
requesting node, thus reducing the query traffic per issued request. 
Note that, due to its efficient query propagation mech- anism, 
Eureka reduces the propagation of useless queries (and, hence, 
collisions), yielding a higher solved-queries ratio than mitigated 
flooding. However, it is evident that deterministic caching does 
not pay off as much as cooperative caching does in Hamlet. 
Table I shows that the average occupancy of node caches in 
Hamlet is comparable to the values observed with DetCache.

Fig. 5: City: Solved-Queries Ratio (Top) and Query Traffic 
(Bottom) Obtained with Different Schemes Versus Content 
Request rate

Table  1: Average Occupancy of the Node Caches, Expressed  as 
A Percentage of the Chunks Total Number for λ = 0.003

Thus, it is the quality, not the quantity, of the information cached 
by Hamlet that allows it to top a sophisticated propagation scheme 
such as Eureka as far as the solved-queries ratio is concerned.
The positive effect of the caching decisions can also be observed 
in fig. 5, in terms of the reduced overhead and latency

Table 2: Average Query Solving Time (in Seconds), with λ = 
0.003

in solving queries. Indeed, Hamlet reduces the overhead by 
shortening the distance between requesting nodes and desired 
information content. Similarly, Table II shows how sensible 
caching choices can significantly reduce the time required to solve 
queries, again due to the homogeneous availability of information 
that they generate in the network.
Further proof of such virtuous behavior by Hamlet is provided in 
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Fig. 6, where mitigated flooding is used for query propagation. 
The figure depicts the time evolution of content presence over the 
road topology for one information item; in particular, the z-axis 
of each plot shows the fraction of different chunks that comprise 
an information item that are present in a squared area of 600 m2 
. On the one hand, it can be observed that mitigated flooding with 
DetCache creates a sharp separation between the area where the 
content source resides, characterized by high item availability, and 
the region where, due to vehicular traffic dynamics, information-
carrying nodes rarely venture. On the other hand, Hamlet favors 
the diffusion of content over the entire scenario so that nodes in 
areas away from the information source can also be served.
Fig. 7 refers to the Mall scenario. The poor performance of Eureka 
in this case is due to the lack of information items over large areas 
of the Mall scenario, resulting in queries not being forwarded 
and, thus, remaining unsolved [23]. Interestingly, Hamlet greatly 
reduces the query traffic for any λ, although providing a much 
higher solved-queries ratio. With regard to the caching occupancy, 
because Hamlet leads to results that are comparable with the 
results obtained with DetCache (see Table 1, Mall scenario), 
it can be asserted that the performance gain achieved through 

Hamlet is due to the more uniform con- tent distribution across 
node caches. Finally, Table 2, confirms that such an improved 
availability of information shortens the waiting time to receive 
requested items.
When comparing results obtained from the Mall and City scenarios, 
we note that the solved-queries ratio is consistently lower. We recall 
that vehicular mobility in the City environ- ment is characterized 
by scattered connectivity but high node speed, whereas the Mall 
environment provides a better network connectivity level but 
reduced node mobility. The low node mobility in the Mall keeps 
items away from the sources of unpopular items for long periods 
of time. Thus, the probability of solving requests for such rare 
content is low, unless an efficient caching scheme allows nodes to 
preserve at least a few copies of every item in every neighborhood, 
as Hamlet does. It is also worth pointing out that, with respect 
to the City environment, the Mall includes a smaller number of 
nodes; thus, fewer queries are issued, and a much smaller amount 
of query traffic is generated.
Finally, we may wonder how well Hamlet performs with respect 
to DetCache when the cache time employed by the latter approach 
is set to a value other than 40 s. Through extensive

 
Fig. 6:  City: Space–Time Evolution of one Information Item During the First 400 s of Simulation, with Mitigated Flooding and 
DetCache (Top) and Hamlet (Bottom). The z-Axis shows the Content Completeness in Each Spatial Slot of 600 m2, with a Value of 
1 Meaning that all of the Items’ Chunks can be Found in the Slot. (a) t = 0 s. (b) t = 100 s. (c) t = 200 s. (d) t = 300 s. (e) t = 400 s

Fig. 7: Mall: Solved-Queries Ratio (Top) and Query Traffic 
(Bottom) with Different Schemes Versus Content Request Rate

Fig. 8: Information Survival in the Mall (top) and City (bottom) 
Scenarios. The Temporal Behavior of the Survived Information 
and Solved Queries when the Gateway Nodes are Switched off 
at t = 200 s
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Fig. 8 shows the time evolution of the number of survived items 
when the gateway nodes are turned off after t = 200 s in the Mall 
and the City. The same plots also present the overall solved query 
rate as time elapses, as observed at 50-s time discretization steps. 
We consider that DetCache and Hamlet are coupled with mitigated 
flooding, and we set λ to 0.003 request/s.
In the Mall, the adaptive caching time introduced by Hamlet helps 
most of the items survive in the system. In the City, the high node 
mobility supports the circulation of information and, thus, its 
survival after the gateways shut down. However, even through 
mobility, DetCache allows some of the items to vanish, whereas 
Hamlet succeeds in keeping all of items around.
In the Mall, we further explore the reaction of DetCache and 
Hamlet to different gateway switch-off times. In fig. 9, for each 
gateway switch-off time, we show the evolution of the number 
of survived items at some landmark time instants

Fig. 9: Mall: Information Survival for Different Gateway Switch-
off Times. The Smaller Numbers on the x-Axis Indicate the 
Landmark Time (in Seconds) to which the Number of Survived 
Items Refers (computed from the start of the simulation). Clearly, 
the later the gateways are shut down, the higher the probability of 
information survival, because the information has more time to 
spread through the network. We observe that Hamlet can maintain 
information presence equal to 100% if the information is given 
enough time to spread, i.e., gateways are disabled after 600 s or 
more, whereas DetCache loses half the items within the first 2000 
s of simulation. We could wonder whether caching times give the 
edge to either Hamlet or DetCache. However, the average caching 
time in Hamlet ranges from 37 s to 45 s, depending on the gateway 
switch-off times and on the specific information item considered. 
These values are very close to the DetCache caching time of 40 
s, showing that Hamlet improves information survival by better 
distributing content in the network and not by simply caching 
them for longer periods of time.
VII.  EVA L UAT I O N WITH SMALL -SIZED CACH E S

We now evaluate the performance of Hamlet in a network where a 
node cache can accommodate only a small portion of the data that 
can be retrieved in the network. As an example, consider a network 
of low-cost robots that are equipped with sensor devices, where 
maps that represent the spatial and tem- poral behavior of different 
phenomena may be needed by the nodes and have to be cached in 
the network. We thus consider the memory-constrained scenario 
introduced in Section V and employ the Hamlet framework to 
define a cache replacement strategy, as detailed in Section IV.
In such a scenario, the caching dynamics of the different in- 
formation items become strongly intertwined. Indeed, caching an 
item often implies discarding different previously stored content, 
and as a consequence, the availability of one item in the proximity 

of a node may imply the absence of another item in the same area. 
Thus, in our evaluation, it is important to con- sider a large number 
of items, as well as to differentiate among these items in terms of 
popularity. We consider an overall per- node query rate Λ = 0.1 and 
sets of several hundreds of items. We assume that popularity levels 
qi  are distributed according to the Zipf law, which has been shown 
to fit popularity curves of content in different kinds of networks 
[29]. When not stated otherwise, the Zipf distribution exponent 
is set to 0.5. Such a value was selected, because it is close to the 
values observed in the real world [29], and the skewness that it 
introduces in the popularity distribution is already sufficient to 
make differences emerge between the caching schemes that we 
study. In any case, we provide an analysis of the impact of the 
Zipf exponent at the end of this section.

Fig. 10: Static Memory-Constrained Nodes: Solved-Queries Ratio 
and Query Traffic as the Information Set Size Varies, with Hybrid 
Cache and Hamlet

We assume that nodes can cache at most ten items, which correspond 
to a percentage between 2% and 10% of the entire information 
set, depending on the considered value of I . In ad- dition, we 
set C = 1 to account for the smaller size of informa- tion items 
typically exchanged by memory-constrained nodes and MC   to 
300 s, because the increased network connectivity prolongs the 
reliability of information presence estimation.
Here, we compare Hamlet with the well-known HybridCache 
cache replacement technique [9]. In HybridCache, a node that 
requests an item always caches the received data. Instead, a 
node on the data path caches the information if its size is small; 
otherwise, it caches the data path, provided that the content copy 
is not very far away. When the maximum cache size is capped, 
content in excess is dropped according to a metric based on the 
number of requests observed for the different items. Because 
HybridCache does not exploit information pres- ence estimation, 
it is less demanding than Hamlet in terms of computation and 
memory capabilities.
We couple both schemes with mitigated flooding. While de- 
riving the results, we noted that caching the data paths leads to 
poor performance due to the high cache replacement frequency 
in the simulated scenarios. Therefore, we set the HybridCache 
parameters so that the following two conditions are satisfied:
1) The size of the data never results in data path caching but 
always in information caching, and 2) mitigated flooding is always 
employed for query forwarding. In addition, to reduce the number 
of query transmissions in the network, queries for missing chunks 
are not reissued, and both Hamlet and HybridCache are coupled 
with the Preferred Group Broadcasting (PGB) technique [30].
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A. Benchmarking Hamlet
Let us first focus on the memory-constrained scenario out- lined 
in Section V with static nodes. Fig. 10 presents the solved- queries 
ratio and the overall query traffic versus the information set size. 

We observe that Hamlet reacts better to the growth of the number 
of items than HybridCache, without incurring any penalty in terms 
of network load, as shown by the similar query traffic generated 
by the two schemes.

 
Fig. 11: Static Memory-Constrained Nodes. (a) Query-Solving Ratio, (b) Time, and (c) Average Networkwide Cache Occupancy 
for Each Item When Using Hybrid Cache and Hamlet, with I = 300. In (c), the Red Horizontal Line Represents Perfect Fairness in 
cache Occupancy Among Different Items

Fig. 12. Static Memory-Constrained Nodes: Spatial Distribution of the 100th, 200th, and 300th Items, Averaged Over Time, for Zipf 
Distribution Exponents Under HybridCache and Hamlet, with I = 300. The z-Axis in the Plots Shows the Mean Content Completeness 
in Each Spatial Slot, with a Value of 1, Meaning that the Entire Content can be Found in the Same Spatial Slot. (a) HybridCache. 
(b) Hamlet
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penalty in terms of network load, as shown by the similar query 
traffic generated by the two schemes.
Observing the performance of Hamlet and HybridCache on a 
per-item basis allows a deeper understanding of the results. In 
Fig. 11(a), we show the solving ratio of the queries for each item 
when I = 300. Along the x-axis, items are ordered in decreasing 
order of popularity, with item 1 representing the most sought-
after information and item 300 the least requested information. 
Unlike Hamlet, HybridCache yields extremely skewed query 
solving ratios for the different content; a similar observation 
also applies to the time needed to solve queries, as shown in Fig. 
11(b). The explanation for such behavior lies in the distribution 
of information in the network. Fig. 11(c) depicts the average 
percentage of memory used to cache a given item, aggregated 
over all network nodes. As expected from the previous results, 
HybridCache fosters the storage of popular content, whereas it 
disregards content that is less requested, even if it represents two 
thirds of the whole information set. Instead, Hamlet achieves, in a 
completely distributed manner, a balanced networkwide utilization 
of node caches. Indeed, the results of Hamlet are very close to 
the most even cache occupancy that we can have, represented 
by the horizontal red line in the plot and corresponding to the 
case where the total network storage capacity is equally shared 
among the I items.

 
Fig. 13: Memory-Constrained Mobile Nodes: Query-Solving 
Ratio for Each Information Item when Using HybridCache and 
Hamlet, with I = 300. The Plots Refer to vm that is Equal to 1 
m/s (left) and 15 m/s (right)

Furthermore, it is not only the sheer quantity of data that makes 
a difference but its spatial distribution also plays a major role. If 
several nodes cache a rare item but they are all very close to each 
other, queries that were generated in other areas of the network take 
more hops to be satisfied. This case happens with HybridCache, 
as proven by the spatial distribution of the 100th,
200th, and 300th items, as shown in Fig. 12(a). Conversely, the 
spatial distribution achieved by Hamlet, as shown in Fig. 12(b), 
is more uniform, leading to a faster more likely resolution of 
queries.
We now compare the performance of HybridCache and Ham- let 
in the scenario with memory-constrained mobile nodes. We test 
the two schemes when I = 300 and for an average node speed vm  
equal to 1 and 15 m/s.
The solved-queries ratio recorded with HybridCache and Hamlet 
on a per-item basis are shown in Fig. 13. Comparing the left and 
right plots, we note that the node mobility, even at high speed, 
does not seem to significantly affect the results due to the high 
network connectivity level. The spatial redistribution of content 
induced by node movements negatively affects the accuracy of 
Hamlet’s estimation process, which explains the slight reduction 

in the solved query ratio at 15 m/s. That same movement favors 
HybridCache, at least at low speed, because it allows unpopular 
information to reach areas that are far from the gateway. However, 
the difference between the two schemes is evident, with Hamlet 
solving an average of 20% requests more than HybridCache, when 
nodes move at 15 m/s.

B. Impact of the Zipf Distribution Skewness

VIII. Conclusion 
These decisions are made depending on the perceived “pres- ence” 
of the content in the node’s proximity, whose estimation does not 
cause any additional overhead to the information sharing system. 
We have introduced Hamlet, which is a caching strategy for ad 
hoc networks whose nodes exchange information items in a peer-
to-peer fashion. Hamlet is a fully distributed schemewhere each 
node, upon receiving a requested information, de- termines the 
cache drop time of the information or which con- tent to replace 
to make room for the newly arrived information. We showed that, 
due to Hamlet’s caching of information that is not held by nearby 
nodes, the solving prob- ability of information queries is increased, 
the overhead traffic is reduced with respect to benchmark caching 
strategies, and this result is consistent in vehicular, pedestrian, 
and memory- constrained scenarios. Conceivably, this paper can 
be extended in the future by addressing content replication and 
consistency.

Fig. 14:

The procedure for information presence estimation that was 
developed in Hamlet can be used to select which content should 
be replicated and at which node (even if such a node did not request 
the content in the first place). In addition, Hamlet can be coupled 
with solutions that can maintain consistency among copies of the 
same information item cached at different network nodes, as well 
as with the versions stored at gateway nodes.
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