
IJCST Vol. 3, Issue 3, July - Sept 2012 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 524 International Journal of Computer Science And Technology

Caching Strategies Based on in Sequence Thickness
Opinion in Wireless Informal Networks

1Chava Kalpana, 2Mohammad. Shareef
1,2Dept. of CSE, Swarana Bharathi Institute of Technology and Science, Khammam, AP, India

Abstract
In the case of small-sized caches, we aim to design a content
replacement strategy that allows nodes to successfully store newly
received information while maintaining the good performance of
the content distribution system.We consider both cases of nodes
with large- and small-sized caches. We address cooperative
caching in wireless networks, where the nodes may be mobile
and exchange information in a peer-to-peer fashion. For large-
sized caches, we devise a strategy where nodes, independent of
each other, decide whether to cache some content and for how
long. Under both conditions, each node takes decisions according
to its per- ception of what nearby users may store in their caches
and with the aim of differentiating its own cache content from the
other nodes’. The result is the creation of content diversity within
the nodes neighborhood so that a requesting user likely finds the
de- sired information nearby. We simulate our caching algorithms
in different ad hoc network scenarios and compare them with other
caching schemes, showing that our solution succeeds in creating
the desired content diversity, thus leading to a resource-efficient
information access.

I. Introduction
Roviding information to users on the move is one of the most
promising directions of the infotainment business, which rapidly
becomes a market reality, because infotainment modules are
deployed on cars and handheld devices. The ubiquity and ease
of access of third- and fourth-generation (3G or 4G) networks will
encourage users to constantly look for content that matches their
interests. However, by exclusively relying on downloading from
the infrastructure, novel applications such as mobile multimedia
are likely to overload the wireless network (as recently happened
to AT&T following the introduction of the iPhone. It is thus
conceivable that a peer-to-peer system could come in handy, if
used in conjunction with cellular networks, to promote content
sharing using ad hoc networking among mobile users. For highly
popular content, peer-to-peer distribution can, indeed, remove
bottlenecks by pushing the distribution from the core to the edge
of the network.
The solution that we propose, called Hamlet, aims at creating
content diversity within the node neighborhood so that users likely
find a copy of the different information items nearby (regardless
of the content popularity level) and avoid flooding the network
with query messages. Although a similar concept has been put
forward in , the novelty in our proposal resides in the probabilistic
estimate, run by each node, of the information presence (i.e., of
the cached content) in the node proximity.By lever- aging such a
local estimate, nodes autonomously decide what information to
keep and for how long, resulting in a distributed scheme that does
not require additional control messages. The Hamlet approach
applies to the following cases.

A. Large-Sized Caches
In this case, nodes can potentially store a large portion (i.e., up
to 50%) of the available information items. Reduced memory
usage is a desirable (if not required) condition, because the same

memory may be shared by different services and applications that
run at nodes. In such a scenario, a caching decision consists of
computing for how long a given content should be stored by a node
that has previously requested it, with the goal of minimizing the
memory usage without affecting the overall information retrieval
performance;

B. Small-Sized Caches
In this case, nodes have a dedicated but limited amount of memory
where to store a small percentage (i.e., up to 10%) of the data
that they retrieve. The caching decision translates into a cache
replacement strategy that selects the information items to be
dropped among the information items just received and the infor-
mation items that already fill up the dedicated memory.
The remainder of this paper is organized as follows. First, we
discuss the related literature in Section II and outline the system
characteristics and assumptions in Section III. The simulation
scenarios considered for the performance evaluation of Hamlet are
detailed in Section V, whereas the results are presented in Sections
VI for large- and small-sized caches, respectively.

II. Related Work

A. Cooperative Caching
In , distributed caching strategies for ad hoc networks are presented
according to which nodes may cache highly popular content that
passes by or record the data path and use it to redirect future
requests. Among the schemes presented in [9], the approach called
Hybrid Cache best matches the operation and system assumptions
that we consider; Furthermore, the need of a manual calibration
of the “cooperation zone” makes the scheme hard to configure,
because different environments are considered. Conversely,.
The latter approach ensures that the density of different content
is proportional to the content’s popularity at the system steady
state, thus obeying the square-root rule proposed in for wired
networks. We point out that the square-root rule does not consider
where copies of the data are located but only how many copies
are created. It is thus insufficient in network environments whose
dynamism makes the positioning of content of fundamental
importance and renders steady-state conditions (as assumed
in) hard to be achieved. Several papers have addressed content
caching and content replacement in wireless networks. In the
following sections, we review the works that are most related to
this paper, highlighting the differences with respect to the Hamlet
framework that we propose.

B. Content Diversity
Similar to Hamlet, in , mobile nodes cache data items other than
their neighbors to improve data accessibility. In particular, the
solution in aims at caching copies of the same content farther
than a given number of hops.. The concept of caching different
content within a neighborhood is also exploited in , where nodes
with similar interests and mobility patterns are grouped together
to improve the cache hit rate, and in , where neighboring mobile
nodes implement a cooperative cache replacement strategy. In

IJCST Vol. 3, Issue 3, July - Sept 2012

w w w . i j c s t . c o m International Journal of Computer Science And Technology   525

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

both works, the caching management is based on instantaneous
feedback from the neighboring nodes, which requires additional
messages. The estimation of the content presence that we propose,
instead, avoids such communication overhead.

C. Caching With Limited Storage Capability
In the presence of small-sized caches, a cache replacement
technique needs to be implemented. Aside from the scheme
in, centralized and distributed solutions to the cache placement
problem, which aim at minimizing data access costs when network
nodes have limited storage capacity, are presented in. which, in
mobile networks, need to be maintained similar to routing tables.
as well as link-layer traffic monitoring to trigger prefetching and
caching. In , the popularity of content is taken into account, along
with its update rate, so that items that are more frequently updated
are more likely to be discarded. Similarly, in , cache replace-
ment is driven by several factors, including access probability,
update frequency, and retrieval delay. These solutions thus jointly
address cache replacement and consistency, whereas in this paper,
we specifically target the former issue. as will be pointed out,
Hamlet can easily be coupled with a dedicated cache consistency
scheme.

D. Data Replication
Although addressing a different problem, some approaches to
data replication are relevant to the data caching solution that
we propose. One technique of eliminating information replicas
among neighboring nodes is introduced in [21], which, unlike
Hamlet, requires knowledge of the information access frequency
and periodic transmission of control messages to coordinate the
nodes’ caching decisions. In [5], the authors propose a replication
scheme that aims at having every node close to a copy of the
information and analyze its convergence time.

III. System Outline and Assumptions
Hamlet is a fully distributed caching strategy for wireless ad hoc
networks whose nodes exchange information items in a peer-to-
peer fashion. cache desired information items.We assume a content
distribution system where the following assumptions hold:

A number I of information items is available to the users, •	
with each item divided into a number C of chunks
User nodes can overhear queries for content and relative •	
responses within their radio proximity by exploiting the
broadcast nature of the wireless medium
User nodes can estimate their distance in hops from the query •	
source and the responding node due to a hop-count field in
the messages.

We detail the features of the specific content retrieval system
that we will consider in the remainder of this paper.If a node
receives a fresh query that contains a request for information
i’s chunks and it caches a copy of one or more of the requested
chunks, Once created, an information message is sent back to
the query source. To avoid a proliferation of information copies
along the path, the only node that is entitled to cache a new copy
of the information is the node that issued the query. Information
messages are transmitted back to the source of the request in a
unicast fashion, along the same path from which the request came.
Nodes along the way either act as relays for transit messages (if
they belong to the backtracking node sequence) or simply overhear
their transmission without relaying them. Fig. 1(b) depicts the
flowchart of the operations at a node that receives a message that
contains an information chunk.

Fig. 1: Flowcharts of the Processing of (a) Query and (b) Information
Messages at User Nodes. We Denote the Address of the Node that
Generated the Query as asrc , the Query Identifier as id, the Address
of the Last Node that Forwarded the Query Message as Alast, and
the set of Queried Chunks as c. The Functional Blocks that are
the Focus of this Paper are Highlighted in (b).

A node that receives the requested information has the option to
cache the received content and thus become a provider for that
content to the other nodes. Determining a strategy of taking such
caching decisions is the main objective of this paper, and as such,
the corresponding decision blocks are highlighted in Fig. 1(b).
We point out that Hamlet exploits the observation of query and
information messages that are sent on the wireless channel as
part of the operations of the content-sharing application, e.g., the
previously outlined approach. As a consequence, Hamlet does not
introduce any signaling overhead.

Mitigated flooding. This approach limits the propagation •	
range of a request by forcing a time to live (TT L) for the query
messages. In addition, it avoids the forwarding of already-
solved requests by making the nodes wait for a query lag
time before rebroadcasting a query;
Eureka [23]. This approach extends mitigated flooding by •	
steering queries toward areas of the network where the
required information is estimated to be denser.

Note that this paper focuses on cooperative caching and we do
not tackle information consistency; thus, we do not take into
account different versions of the content in the system model.
We note, however, that the previous version of this paper [24]
jointly evaluated Hamlet with a basic scheme for weak cache
consistency based on an epidemic diffusion of an updated cache
content and we showed that weak consistency can be reached,
even with such a simple approach, with latencies on the order of
minutes for large networks. If prompter solutions are sought,In

IJCST Vol. 3, Issue 3, July - Sept 2012 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 526 International Journal of Computer Science And Technology

the case of Hamlet, a push technique can be implemented through
the addition of invalidation messages broadcast by gateway nodes,
whereas information providers can pull an updated content (or
verify its freshness) before sending the information to querying
nodes. In either case, no major modification of the Hamlet caching
scheme is required: the only tweaking can consist of resetting
the estimation of the information presence upon the notification/
detection of an updated version to ease the diffusion of the new
information.

IV. Hamlet Framework
The Hamlet framework allows wireless users to take caching
decisions on content that they have retrieved from the network.
The process that we devise allows users to take such deci- sions
by leveraging a node’s local observation, i.e., the node’s ability
to overhear queries and information messages on the wireless
channel. In particular, for each information item, a node records
the distance (in hops) of the node that issues the query, i.e., where
a copy of the content is likely to be stored, and the distance of the
node that provides the information. Based on such observations,
the node computes an index of the information presence in its
proximity for each of the I items. Then, as the node retrieves
content that it requested, it uses the presence index of such an
information item to determine whether a copy of the content should
be cached, for how long, and possibly which content it should
replace. By doing so, a node takes caching decisions that favor
high content diversity in its surroundings, inherently easing the
retrieval of data in the network.

Fig. 2: Q and P Denote, Respectively, a Node that Issues a Query
and a Node that Provides the Requested Content. Node R in
the Lower Plot is a Relay Node, Overhearing the Exchanged
Messages. The Upper and Lower Plots, Respectively, Represent
the Case 1 hQ Value for the Provider Node P and the Case 2 hQ
and hP Values for the Relay Node R with Respect to the Query
Source Q and the Provider P.

whether a copy of the content should be cached, for how long,
and possibly which content it should replace. By doing so, a
node takes caching decisions that favor high content diversity
in its surroundings, inherently easing the retrieval of data in the
network.
In the following sections, we first detail how a node estimates
the presence of information chunks in its proximity. Next, we
separately describe the role of the information presence index in
caching decisions for nodes with large- and small-sized caches.
In the former case, the information presence index determines the
cache content drop time, whereas in the latter case, it drives the
cache content replacement.

A. Information Presence Estimation
We define the reach range of a generic node n as its distance from
the farthest node that can receive a query generated by node n
itself. Next, we denote by f the frequency at which every node
estimates the presence of each information item within its reach
range, and we define as 1/f the duration of each estimation step
(also called time step hereafter).
A node n uses the information that was captured within its
reach range during time step j to compute the following two
quantities:

 A provider counter by using application-layer data1.	
A transit counter by using data that were collected through 2.	
channel overhearing in a cross-layer fashion. These counters
are defined as follows.
Provider counter dic (n, j). This quantity accounts for the •	
presence of new copies of information i’s chunk c, delivered
by n to querying nodes within its reach range, during step j.
Node n updates this quantity every time it acts as a provider
node (e.g., node P in the upper plot of Fig. 2).
Transit counter ric (n, j). This quantity accounts for the •	
presence of new copies of information i’s chunk c, trans-
ferred between two nodes within n’s reach range and received
(or overheard) by n, during step j. Node n thus updates
this quantity if it receives (or overhears) an infor- mation
message,1 e.g., node R in the lower plot of Fig. 2; thus, the
transit counter is the only data structure that needs cross-layer
access, i.e., the number of information copies whose transit
the node has overheard at lower layers (and subsequently
inspected).

The provider and transit counters are updated through the hop
count information that is included in the query and information
message header. The exact procedure is as detailed follows:
1. If node n generates a reply information message that contains
chunks of information item i, as an answer to a query for some
chunk c that it owns, then a new copy of such chunks is possibly
cached at the node that generated the query. Node n must therefore
account for the presence of such a new copy at a distance hQ
, which is equal to the number of hops that were covered by
the query (see the upper plot of Fig. 2). The provider counter is
updated by a quantity that is inversely proportional to the distance
hQ as follows:
Based on the aforementioned quantities, node n can compute a
presence index of chunk c of information i, as observed during
step j within node n’s reach range. We refer to such a value as pic
(n, j) and define it as
pic (n, j) = min {1, dic (n, j)+ ric (n, j)}.		 (1)
According to (4), pic (n, j) comprises the range [0, 1]. A zero-value
means that the presence of chunk c of information i was not sensed
by n during time step j. Instead, if the chunk is cached one hop
away from n, pic (n, j) is equal to one; this case is the “best,” where
the chunk would directly be available to n if needed. Intermediate
values between 0 and 1 are recorded when n observes chunks that
are cached more than one hop away. Note that multiple contributions
of the last kind can sum up to a maximum information presence
pic (n, j) = 1, because we rate the dense presence of chunks a few
hops away as valuable as a single chunk at a one-hop distance.
The information presence index thus computed plays a crucial
role in taking caching decisions in both large- and small-sized
caches, as described in the next sections.
Note that the larger the hQ , i.e., the farthest the new chunk copy,
the lesser the added contribution.
2. If node n receives or overhears a new transit information

IJCST Vol. 3, Issue 3, July - Sept 2012

w w w . i j c s t . c o m International Journal of Computer Science And Technology   527

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

i message, which contains a chunk c whose query status was
pending, it must then account for the presence of the following
copies: 1) a new copy of the chunk that will be cached by a node
at a distance of hQ hops and 2) an existing copy that is cached at
a distance of hP hops (see Fig. 2, lower plot). Thus, following the
approach in (1), the transit counter is updated as follows:

B. Large-Sized Caches: Computation of the Content Drop
Time
We first consider the case in which nodes have a large-sized
cache, enough to potentially store a large portion (i.e., 50% or
more) of the content that they request. Thus, here, we exploit
the aforementioned information presence estimate to determine
a cache drop time after which We denote by χi (n, j) the cache
drop time that node n
computes at the end of time step j for information item i. Such
a
drop time applies to all chunks, belonging to information item i,
that will be received during time step (j + 1). To compute χi (n, j),
node n estimates an overall probability of information presence,
by composing the presence indices pic (n, j) of all chunks of
information i, as follows.
Because pic (n, j) are samples of the chunk presence, node n first
needs to quantify the amount of time for which these samples
are meaningful. If all nodes run Hamlet, the best guess that node
n can take to determine the presence index is to use its local
estimate of the cache drop time χi (n, j − 1), assuming that it is not
very different from its neighbors’. Consistent with this reasoning,
the contribution of a presence index computed at step k should
only be considered for a time χi (n, k − 1). However, discarding
contributions exactly after a time χi (n, k − 1) leads to an ON/OFF
behavior and yields discontinuities in the caching decision process.
Moreover, a hard contribution removal threshold is inconsistent
with the uncertainty in the knowledge of the neighbors’ caching
times; the value χi (n, k − 1) used by node n may differ from the
cache drop time computed by the nodes within n’s reach range,
particularly if they are several hops away.

Fig. 3: Filter Impulse Responses wi (n, k, j) for Different Values of
χi (n, k −1), where k = 1, α = 0.9, and W = 0.5. For k = 1, the Time
Axis Marks the Time Steps Since the Chunk has Been Cached.

To account for these factors, we smooth the contributions through
an ad hoc filter. At time step j (whose duration is 1/f), node n
weighs each past index pic (n, k), k < j by a smoothing factor wi
(n, k, j), which is defined as

C. Small-Sized Caches: Content Replacement
When equipped with a small-sized cache, nodes cannot store all
content that they request but are forced to choose which items to
keep and which items to discard every time newly retrieved data
fill up their memory. In this case, computing cache drop times

is clearly not a solution, because the lingering of items in cache
is primarily determined by the rate of reception of new content.
Therefore, in the presence of limited dedicated storage resources,
we exploit the information presence estimate to define a content
replacement policy that favors a balanced distribution of data
over the network so that all content is as “close” as possible to a
requesting node.
The rationale of our content replacement strategy is very similar
to the approach employed for the cache drop time computation.
Again, we start by identifying the amount of time for which
the index pic (n, j) must be considered valid and define a new
smoothing factor wˆi (n, k, j) to that end as whose details will be
discussed at the end of this section, for clarity.
We can thereafter define the completeness of item i, estimated by
node n from samples observed at time step k, as

???????????? Eq. is Missing ?????????

and the overall presence index as

			 (3)
With respect to the equivalent formulation for the case of large-
sized caches in (7), the index in (11) is not bounded by 1. Indeed,
pˆi (n, j) is an estimate of the total amount of information i in the
reach range of node n at time step j.
We thus leverage pˆi (n, j) as the metric for a content replace- ment
strategy. Upon the reception, at time step j, of new data to be
cached and exceeding the free storage memory, node n discards
chunks3 of information i associated with the highest pˆi (n, j)
until the remaining data fit the storage constraints. In other words,
each node tries to keep content that is estimated to be rarer in its
surroundings while dropping data that are evaluated to be already
commonly available in the area.
How we can compute the estimated caching time χˆi (n, k) remains
to be defined. To this end, the best guess that a node can take is
to assume that users in its neighborhood attribute similar caching
priorities to the information items, i.e., the ordering of
pˆi (n, k),

A

i, that they compute is in agreement with the ordering
of the node. Under this assumption, a node n can estimate the
amount of time for which a neighboring user will cache a newly
received chunk of item i to be inversely proportional to the pˆi
(n, k) that it has locally computed. As aforementioned, we define
a maximum cache permanence time MC, after which, a chunk is
discarded to avoid stored information from becoming stale and
node movement from leading to inconsistencies with respect to
previous information presence ratings. The estimated caching
time is then computed as

To provide an interpretation for (12), consider the case of chunks
of the most common information item in the area. Because, as
aforementioned, a node discards a chunk of in- formation i
associated with the highest pˆi (n, j), the estimated caching time
for such a chunk is set to 0 in (12), and caching times of much
less popular chunks are, instead, estimated to be much longer
(up to MC).
As the estimated presence decreases, the chance that chunks
find space in the cache of requesting nodes grows, reaching

IJCST Vol. 3, Issue 3, July - Sept 2012 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 528 International Journal of Computer Science And Technology

the maximum estimated caching time MC if the information is
completely absent from the area, i.e., when pˆi (n, j) = 0.
Note that (12) does not depend on the content query rate as a
precise design choice. Indeed, it is not likely that a node knows the
frequency of requests that were generated for each information item
by the different users in the network and assuming such knowledge
would noticeably limit the feasibility of the solution.

Fig. 4: Simulation Scenarios: City (Left) and Mall (Right)

The performance evaluation that we conducted shows that the lack
of query rate awareness does not prevent Hamlet from achieving
its goals.

V. Simulation Scenarios and Metrics
We tested the performance of Hamlet through ns2 simula- tions
under the following three different wireless scenarios:
1) a network of vehicles that travel in a city section (referred to as
City); 2) a network of portable devices carried by customers who
walk in a mall (Mall); and 3) a network of densely and randomly
deployed nodes with memory limitations (memory- constrained
nodes). The three scenarios are characterized by different levels
of node mobility and network connectivity.
In the City scenario, as depicted in Fig. 4, vehicle movement
is modeled by the intelligent driver model with intersection
management (IDM-IM), which takes into account car-to-car
interactions and stop signs or traffic lights [27]. We simulated a
rather sparse traffic, with an average vehicle density of 15
veh/km over a neighborhood of 6.25 km2 . The mobility model
settings, forcing vehicles to stop and queue at inter- sections, led to
an average vehicle speed of about 7 m/s (i.e., 25 km/h). We set the
radio range to 100 m in the vehicular scenario, and by analyzing
the network topology during the simulations, we observed an
average link duration of 24.7 s and a mean of 45 disconnected
node clusters concurrently present over the road topology. The
City scenario is thus characterized by scattered connectivity and
high node mobility. The Mall scenario is represented in Fig.
4 as a large L-shaped open space of 400 m of length on the long
side, where pedestrian users can freely walk. In this scenario, we
record an average of 128 users who walk at an average speed of
0.5 m/s according to the random-direction mobility model with
reflections [28]. The node radio range is set to 25 m, leading to an
average link duration equal to 43 s, with a mean of ten disconnected
clusters of users present at the same time in the network. The
connectivity level in the Mall is thus significantly higher than in
the City, whereas node mobility is much lower.
The memory-constrained scenario is similar to the sce- nario
employed for the performance evaluation of the cache replacement
schemes in [9] and [14]. It is composed of 300 wireless nodes
deployed over a square area of a side equal to 200 m. Nodes can

be static, positioned according to a uniform random distribution,
or mobile, wandering according to a random-direction mobility
model with reflections. The node speed is uniformly distributed
in the range [0.5vm , 1.5vm], where vm is the average node
speed—a varying parameter in our simulations. The node radio
range is set to 20 m, resulting, for static nodes, in a fully connected
network.
In all the scenarios, we deploy two fixed gateway nodes at opposite
ends of the topology. Each gateway permanently stores 1/2 of the
information items, whereas the other half is provided by the other
gateway. Initially, nodes have an empty cache; they randomly
request any among the I items that are not in their cache according
to a Poisson process with parameter λi = Λqi (1 ≤ i ≤ I). Λ
is the query generation rate per node, whereas qi represents
the content popularity level (i.e., the probability that, among all
possible content, a node requests item i). The TTL value for query
messages is set to ten and five hops for the case of large- and
small-sized caches, respectively, and the query lag time is 50 ms.
Note that the impact of all the aforementioned query propagation
parameters on the information-sharing behavior has been studied
in [23]; here, we only consider what has been identified as a good
parameter setting.
With regard to the Hamlet parameters, the estimation fre- quency
is such that 1/f = 0.2MC ; indeed, through extensive simulations,
we observed that the impact of f is negligible, as long as 1/f is
not greater than 20% of the maximum caching time. As we fix τ
= f MC , this setting of f leads to a value of τ as small as 5. Then,
we have α = 0.9 and W = 0.5; indeed, we have verified that this
combination yields a smoother behavior of the presence index
pi (n, j). The values of the remaining parameters are separately
specified for large- and small-sized caches.
The information-sharing application lies on top of a User
Datagram Protocol (UDP)-like transport protocol, whereas, at
the media access control (MAC) layer, the IEEE 802.11 standard
in the promiscuous mode is employed. No routing algorithm is
implemented: queries use a MAC-layer broadcast transmission,
and information messages find their way back to the requesting
node following a unicast path. Information messages exploit the
request to send/clear to send (RTS/CTS) mechanism and MAC-
level retransmissions, whereas query messages of broadcast nature
do not use RTS/CTS and are never retransmitted. The channel
operates at 11 Mb/s, and signal propagation is reproduced by a
two-ray ground model. Simulations were run for 10 000 s.
In the aforementioned scenarios, our performance evaluation
hinges upon the following quite-comprehensive set of metrics
that are aimed at highlighting the benefits of using Hamlet in a
distributed scenario:

The ratio between solved and generated queries, called 1.	
solved-queries ratio;
The communication overhead;2.	
The time needed to solve a query;3.	
The cache occupancy.4.	

We have further recorded the spatiotemporal distribution of
information and the statistics of information survival, because
they help in quantifying the effectiveness of Hamlet in preserv-
ing access to volatile information. As aforementioned, we did not
explore the problem of cache consistency, because such an issue
is orthogonal to this paper.

VI. Evaluation with Large - Sized Caches
Here, we evaluate the performance of Hamlet in a network of nodes
with large storage capabilities, i.e., with caches that can store up

IJCST Vol. 3, Issue 3, July - Sept 2012

w w w . i j c s t . c o m International Journal of Computer Science And Technology   529

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

to 50% of all information items. Because such characteristics are
most likely found in vehicular communication devices, tablets, or
smartphones, the network environments under study are the City
and Mall scenarios. As discussed in Section IV, in this case, the
Hamlet framework is employed to compute the caching time for
information chunks retrieved by nodes, with the goal of improving
the content distribution in the network while keeping the resource
consumption low.
We first compare Hamlet’s performance to the results obtained
with a deterministic caching strategy, called DetCache, which
simply drops cached chunks after a fixed amount of time. Then,
we demonstrate the effectiveness of Hamlet in the specific task
of information survival. In all tests, we assume I = 10 items, each
comprising C = 30 chunks. All items have identical popularity,
i.e., all items are requested with the same rate λ = Λ/I by all
network nodes. The choice of equal request rates derives from
the observation that, in the presence of nodes with a large-sized
memory, caching an information item does not imply discarding
another information item; thus, the caching dynamics of the
different items are independent of each other and only depend
on the absolute value of the query rate. It follows that considering
a larger set of items would not change the results but only lead to
more time-consuming simulations.
Each query includes 20 B plus 1 B for each chunk request, whereas
information messages include a 20-B header and carry a 1024-B
information chunk. The maximum caching time MC is set to 100 s,
unless otherwise specified. Queries for chunks that are still missing
are periodically issued every 5 s until either the information is
fully retrieved or a timeout that is set to 25 s expires.

A. Benchmarking Hamlet
We set the deterministic caching time in DetCache to 40 s, and
we couple DetCache and Hamlet with both the mitigated flooding
and Eureka techniques for query propagation. We are interested
in the following two fundamental metrics: 1) the ratio of queries
that were successfully solved by the system and 2) the amount of
query traffic that was generated. The latter metric, in particular,
provides an indication of the system effectiveness in preserving
locally rich information content: if queries hit upon the sought
information in one or two hops, then the query traffic is obviously
low. However, whether such a wealth of information is the result
of a resource-inefficient cache-all-you-see strategy or a sensible
cooperative strategy, e.g., the approach fostered by Hamlet,
remains to be seen. Thus, additional metrics that are related to
cache occupancy and information cache drop time must be coupled
with the aforementioned metrics.
Fig. 5 shows the solved-queries ratio (top plot) and the amount
of query traffic (bottom plot) as λ varies in the City scenario.
When DetCache is used, the higher the query rate, the larger
the number of nodes that cache an information item. This case
implies that content can be retrieved with higher probability
and also that it is likely to be found in the proximity of the
requesting node, thus reducing the query traffic per issued request.
Note that, due to its efficient query propagation mech- anism,
Eureka reduces the propagation of useless queries (and, hence,
collisions), yielding a higher solved-queries ratio than mitigated
flooding. However, it is evident that deterministic caching does
not pay off as much as cooperative caching does in Hamlet.
Table I shows that the average occupancy of node caches in
Hamlet is comparable to the values observed with DetCache.

Fig. 5: City: Solved-Queries Ratio (Top) and Query Traffic
(Bottom) Obtained with Different Schemes Versus Content
Request rate

Table 1: Average Occupancy of the Node Caches, Expressed as
A Percentage of the Chunks Total Number for λ = 0.003

Thus, it is the quality, not the quantity, of the information cached
by Hamlet that allows it to top a sophisticated propagation scheme
such as Eureka as far as the solved-queries ratio is concerned.
The positive effect of the caching decisions can also be observed
in fig. 5, in terms of the reduced overhead and latency

Table 2: Average Query Solving Time (in Seconds), with λ =
0.003

in solving queries. Indeed, Hamlet reduces the overhead by
shortening the distance between requesting nodes and desired
information content. Similarly, Table II shows how sensible
caching choices can significantly reduce the time required to solve
queries, again due to the homogeneous availability of information
that they generate in the network.
Further proof of such virtuous behavior by Hamlet is provided in

IJCST Vol. 3, Issue 3, July - Sept 2012 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 530 International Journal of Computer Science And Technology

Fig. 6, where mitigated flooding is used for query propagation.
The figure depicts the time evolution of content presence over the
road topology for one information item; in particular, the z-axis
of each plot shows the fraction of different chunks that comprise
an information item that are present in a squared area of 600 m2
. On the one hand, it can be observed that mitigated flooding with
DetCache creates a sharp separation between the area where the
content source resides, characterized by high item availability, and
the region where, due to vehicular traffic dynamics, information-
carrying nodes rarely venture. On the other hand, Hamlet favors
the diffusion of content over the entire scenario so that nodes in
areas away from the information source can also be served.
Fig. 7 refers to the Mall scenario. The poor performance of Eureka
in this case is due to the lack of information items over large areas
of the Mall scenario, resulting in queries not being forwarded
and, thus, remaining unsolved [23]. Interestingly, Hamlet greatly
reduces the query traffic for any λ, although providing a much
higher solved-queries ratio. With regard to the caching occupancy,
because Hamlet leads to results that are comparable with the
results obtained with DetCache (see Table 1, Mall scenario),
it can be asserted that the performance gain achieved through

Hamlet is due to the more uniform con- tent distribution across
node caches. Finally, Table 2, confirms that such an improved
availability of information shortens the waiting time to receive
requested items.
When comparing results obtained from the Mall and City scenarios,
we note that the solved-queries ratio is consistently lower. We recall
that vehicular mobility in the City environ- ment is characterized
by scattered connectivity but high node speed, whereas the Mall
environment provides a better network connectivity level but
reduced node mobility. The low node mobility in the Mall keeps
items away from the sources of unpopular items for long periods
of time. Thus, the probability of solving requests for such rare
content is low, unless an efficient caching scheme allows nodes to
preserve at least a few copies of every item in every neighborhood,
as Hamlet does. It is also worth pointing out that, with respect
to the City environment, the Mall includes a smaller number of
nodes; thus, fewer queries are issued, and a much smaller amount
of query traffic is generated.
Finally, we may wonder how well Hamlet performs with respect
to DetCache when the cache time employed by the latter approach
is set to a value other than 40 s. Through extensive

Fig. 6: City: Space–Time Evolution of one Information Item During the First 400 s of Simulation, with Mitigated Flooding and
DetCache (Top) and Hamlet (Bottom). The z-Axis shows the Content Completeness in Each Spatial Slot of 600 m2, with a Value of
1 Meaning that all of the Items’ Chunks can be Found in the Slot. (a) t = 0 s. (b) t = 100 s. (c) t = 200 s. (d) t = 300 s. (e) t = 400 s

Fig. 7: Mall: Solved-Queries Ratio (Top) and Query Traffic
(Bottom) with Different Schemes Versus Content Request Rate

Fig. 8: Information Survival in the Mall (top) and City (bottom)
Scenarios. The Temporal Behavior of the Survived Information
and Solved Queries when the Gateway Nodes are Switched off
at t = 200 s

IJCST Vol. 3, Issue 3, July - Sept 2012

w w w . i j c s t . c o m International Journal of Computer Science And Technology   531

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

Fig. 8 shows the time evolution of the number of survived items
when the gateway nodes are turned off after t = 200 s in the Mall
and the City. The same plots also present the overall solved query
rate as time elapses, as observed at 50-s time discretization steps.
We consider that DetCache and Hamlet are coupled with mitigated
flooding, and we set λ to 0.003 request/s.
In the Mall, the adaptive caching time introduced by Hamlet helps
most of the items survive in the system. In the City, the high node
mobility supports the circulation of information and, thus, its
survival after the gateways shut down. However, even through
mobility, DetCache allows some of the items to vanish, whereas
Hamlet succeeds in keeping all of items around.
In the Mall, we further explore the reaction of DetCache and
Hamlet to different gateway switch-off times. In fig. 9, for each
gateway switch-off time, we show the evolution of the number
of survived items at some landmark time instants

Fig. 9: Mall: Information Survival for Different Gateway Switch-
off Times. The Smaller Numbers on the x-Axis Indicate the
Landmark Time (in Seconds) to which the Number of Survived
Items Refers (computed from the start of the simulation). Clearly,
the later the gateways are shut down, the higher the probability of
information survival, because the information has more time to
spread through the network. We observe that Hamlet can maintain
information presence equal to 100% if the information is given
enough time to spread, i.e., gateways are disabled after 600 s or
more, whereas DetCache loses half the items within the first 2000
s of simulation. We could wonder whether caching times give the
edge to either Hamlet or DetCache. However, the average caching
time in Hamlet ranges from 37 s to 45 s, depending on the gateway
switch-off times and on the specific information item considered.
These values are very close to the DetCache caching time of 40
s, showing that Hamlet improves information survival by better
distributing content in the network and not by simply caching
them for longer periods of time.
VII. EVA L UAT I O N WITH SMALL -SIZED CACH E S

We now evaluate the performance of Hamlet in a network where a
node cache can accommodate only a small portion of the data that
can be retrieved in the network. As an example, consider a network
of low-cost robots that are equipped with sensor devices, where
maps that represent the spatial and tem- poral behavior of different
phenomena may be needed by the nodes and have to be cached in
the network. We thus consider the memory-constrained scenario
introduced in Section V and employ the Hamlet framework to
define a cache replacement strategy, as detailed in Section IV.
In such a scenario, the caching dynamics of the different in-
formation items become strongly intertwined. Indeed, caching an
item often implies discarding different previously stored content,
and as a consequence, the availability of one item in the proximity

of a node may imply the absence of another item in the same area.
Thus, in our evaluation, it is important to con- sider a large number
of items, as well as to differentiate among these items in terms of
popularity. We consider an overall per- node query rate Λ = 0.1 and
sets of several hundreds of items. We assume that popularity levels
qi are distributed according to the Zipf law, which has been shown
to fit popularity curves of content in different kinds of networks
[29]. When not stated otherwise, the Zipf distribution exponent
is set to 0.5. Such a value was selected, because it is close to the
values observed in the real world [29], and the skewness that it
introduces in the popularity distribution is already sufficient to
make differences emerge between the caching schemes that we
study. In any case, we provide an analysis of the impact of the
Zipf exponent at the end of this section.

Fig. 10: Static Memory-Constrained Nodes: Solved-Queries Ratio
and Query Traffic as the Information Set Size Varies, with Hybrid
Cache and Hamlet

We assume that nodes can cache at most ten items, which correspond
to a percentage between 2% and 10% of the entire information
set, depending on the considered value of I . In ad- dition, we
set C = 1 to account for the smaller size of informa- tion items
typically exchanged by memory-constrained nodes and MC to
300 s, because the increased network connectivity prolongs the
reliability of information presence estimation.
Here, we compare Hamlet with the well-known HybridCache
cache replacement technique [9]. In HybridCache, a node that
requests an item always caches the received data. Instead, a
node on the data path caches the information if its size is small;
otherwise, it caches the data path, provided that the content copy
is not very far away. When the maximum cache size is capped,
content in excess is dropped according to a metric based on the
number of requests observed for the different items. Because
HybridCache does not exploit information pres- ence estimation,
it is less demanding than Hamlet in terms of computation and
memory capabilities.
We couple both schemes with mitigated flooding. While de-
riving the results, we noted that caching the data paths leads to
poor performance due to the high cache replacement frequency
in the simulated scenarios. Therefore, we set the HybridCache
parameters so that the following two conditions are satisfied:
1) The size of the data never results in data path caching but
always in information caching, and 2) mitigated flooding is always
employed for query forwarding. In addition, to reduce the number
of query transmissions in the network, queries for missing chunks
are not reissued, and both Hamlet and HybridCache are coupled
with the Preferred Group Broadcasting (PGB) technique [30].

IJCST Vol. 3, Issue 3, July - Sept 2012 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 532 International Journal of Computer Science And Technology

A. Benchmarking Hamlet
Let us first focus on the memory-constrained scenario out- lined
in Section V with static nodes. Fig. 10 presents the solved- queries
ratio and the overall query traffic versus the information set size.

We observe that Hamlet reacts better to the growth of the number
of items than HybridCache, without incurring any penalty in terms
of network load, as shown by the similar query traffic generated
by the two schemes.

Fig. 11: Static Memory-Constrained Nodes. (a) Query-Solving Ratio, (b) Time, and (c) Average Networkwide Cache Occupancy
for Each Item When Using Hybrid Cache and Hamlet, with I = 300. In (c), the Red Horizontal Line Represents Perfect Fairness in
cache Occupancy Among Different Items

Fig. 12. Static Memory-Constrained Nodes: Spatial Distribution of the 100th, 200th, and 300th Items, Averaged Over Time, for Zipf
Distribution Exponents Under HybridCache and Hamlet, with I = 300. The z-Axis in the Plots Shows the Mean Content Completeness
in Each Spatial Slot, with a Value of 1, Meaning that the Entire Content can be Found in the Same Spatial Slot. (a) HybridCache.
(b) Hamlet

IJCST Vol. 3, Issue 3, July - Sept 2012

w w w . i j c s t . c o m International Journal of Computer Science And Technology   533

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

penalty in terms of network load, as shown by the similar query
traffic generated by the two schemes.
Observing the performance of Hamlet and HybridCache on a
per-item basis allows a deeper understanding of the results. In
Fig. 11(a), we show the solving ratio of the queries for each item
when I = 300. Along the x-axis, items are ordered in decreasing
order of popularity, with item 1 representing the most sought-
after information and item 300 the least requested information.
Unlike Hamlet, HybridCache yields extremely skewed query
solving ratios for the different content; a similar observation
also applies to the time needed to solve queries, as shown in Fig.
11(b). The explanation for such behavior lies in the distribution
of information in the network. Fig. 11(c) depicts the average
percentage of memory used to cache a given item, aggregated
over all network nodes. As expected from the previous results,
HybridCache fosters the storage of popular content, whereas it
disregards content that is less requested, even if it represents two
thirds of the whole information set. Instead, Hamlet achieves, in a
completely distributed manner, a balanced networkwide utilization
of node caches. Indeed, the results of Hamlet are very close to
the most even cache occupancy that we can have, represented
by the horizontal red line in the plot and corresponding to the
case where the total network storage capacity is equally shared
among the I items.

Fig. 13: Memory-Constrained Mobile Nodes: Query-Solving
Ratio for Each Information Item when Using HybridCache and
Hamlet, with I = 300. The Plots Refer to vm that is Equal to 1
m/s (left) and 15 m/s (right)

Furthermore, it is not only the sheer quantity of data that makes
a difference but its spatial distribution also plays a major role. If
several nodes cache a rare item but they are all very close to each
other, queries that were generated in other areas of the network take
more hops to be satisfied. This case happens with HybridCache,
as proven by the spatial distribution of the 100th,
200th, and 300th items, as shown in Fig. 12(a). Conversely, the
spatial distribution achieved by Hamlet, as shown in Fig. 12(b),
is more uniform, leading to a faster more likely resolution of
queries.
We now compare the performance of HybridCache and Ham- let
in the scenario with memory-constrained mobile nodes. We test
the two schemes when I = 300 and for an average node speed vm
equal to 1 and 15 m/s.
The solved-queries ratio recorded with HybridCache and Hamlet
on a per-item basis are shown in Fig. 13. Comparing the left and
right plots, we note that the node mobility, even at high speed,
does not seem to significantly affect the results due to the high
network connectivity level. The spatial redistribution of content
induced by node movements negatively affects the accuracy of
Hamlet’s estimation process, which explains the slight reduction

in the solved query ratio at 15 m/s. That same movement favors
HybridCache, at least at low speed, because it allows unpopular
information to reach areas that are far from the gateway. However,
the difference between the two schemes is evident, with Hamlet
solving an average of 20% requests more than HybridCache, when
nodes move at 15 m/s.

B. Impact of the Zipf Distribution Skewness

VIII. Conclusion
These decisions are made depending on the perceived “pres- ence”
of the content in the node’s proximity, whose estimation does not
cause any additional overhead to the information sharing system.
We have introduced Hamlet, which is a caching strategy for ad
hoc networks whose nodes exchange information items in a peer-
to-peer fashion. Hamlet is a fully distributed schemewhere each
node, upon receiving a requested information, de- termines the
cache drop time of the information or which con- tent to replace
to make room for the newly arrived information. We showed that,
due to Hamlet’s caching of information that is not held by nearby
nodes, the solving prob- ability of information queries is increased,
the overhead traffic is reduced with respect to benchmark caching
strategies, and this result is consistent in vehicular, pedestrian,
and memory- constrained scenarios. Conceivably, this paper can
be extended in the future by addressing content replication and
consistency.

Fig. 14:

The procedure for information presence estimation that was
developed in Hamlet can be used to select which content should
be replicated and at which node (even if such a node did not request
the content in the first place). In addition, Hamlet can be coupled
with solutions that can maintain consistency among copies of the
same information item cached at different network nodes, as well
as with the versions stored at gateway nodes.

References
[1]	 J. Wortham (2009),"Customers Angered as iPhones Overload

AT&T. The New York Times", [Online] Available: http://
www.nytimes. com/2009/09/03/technology/companies/03att.
html

[2]	 A. Lindgren, P. Hui,“The quest for a killer app for opportu-
nistic and delay-tolerant networks”, in Proc. ACM CHANTS,
2009, pp. 59–66.

[3]	 P. Padmanabhan, L. Gruenwald, A. Vallur, M. Atiquzza-
man,“A survey of data replication techniques for mobile

IJCST Vol. 3, Issue 3, July - Sept 2012 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 534 International Journal of Computer Science And Technology

ad hoc network databases”, VLDB J., Vol. 17, No. 5, pp.
1143–1164, Aug. 2008.

[4]	 A. Derhab, N. Badache,“Data replication protocols for
mobile ad hoc networks: A survey and taxonomy”, IEEE
Commun. Surveys Tuts., Vol. 11, No. 2, pp. 33–51, Second
Quarter, 2009.

[5]	 B.-J. Ko, D. Rubenstein,“Distributed self-stabilizing
placement of replicated resources in emerging networks”,
IEEE/ACM Trans. Netw., Vol. 13, No. 3, pp. 476–487, Jun.
2005.

[6]	 G. Cao, L. Yin, C. R. Das,“Cooperative cache-based data
access in ad hoc networks”, Computer, Vol. 37, No. 2, pp.
32–39, Feb. 2004.

[7]	 C.-Y. Chow, H. V. Leong, A. T. S. Chan,“GroCoca:
Group-based peer-to-peer cooperative caching in mobile
environment”, IEEE J. Sel. Areas Commun., Vol. 25, No.
1, pp. 179–191, Jan. 2007.

[8]	 T. Hara,“Cooperative caching by mobile clients in push-based
information systems”, in Proc. CIKM, 2002, pp. 186–193.

[9]	 L. Yin, G. Cao,“Supporting cooperative caching in ad hoc
networks”, IEEE Trans. Mobile Comput., Vol. 5, No. 1, pp.
77–89, Jan. 2006.

[10]	N. Dimokas, D. Katsaros, Y. Manolopoulos,“Cooperative
caching in wireless multimedia sensor networks”, ACM
Mobile Netw. Appl., Vol. 13, No. 3/4, pp. 337–356, Aug.
2008.

[11]	Y. Du, S. K. S. Gupta, G. Varsamopoulos,“Improving on-
demand data access efficiency in MANETs with cooperative
caching”, Ad-Hoc Netw., Vol. 7, No. 3, pp. 579–598, May
2009.

[12]	Y. Zhang, J. Zhao, G. Cao,“Roadcast: A popularity-aware
content sharing scheme in VANETs”, in Proc. IEEE Int.
Conf. Distrib. Comput. Syst., Los Alamitos, CA, 2009, pp.
223–230.

[13]	E. Cohen, S. Shenker,“Replication strategies in unstructured
peer-to- peer networks”, in Proc. ACM SIGCOMM, Aug.
2002, pp. 177–190.

[14]	B. Tang, H. Gupta, S. Das,“Benefit-based data caching in ad
hoc networks”, IEEE Trans. Mobile Comput., Vol. 7, No. 3,
pp. 289–304, Mar. 2008.

[15]	W. Li, E. Chan, D. Chen,“Energy-efficient cache replacement
policies for cooperative caching in mobile ad hoc network”,
in Proc. IEEE WCNC, Kowloon, Hong Kong, Mar. 2007,
pp. 3347–3352.

[16]	M. K. Denko, J. Tian,“Cross-layer design for cooperative
caching in mobile ad hoc networks”, in Proc. IEEE CCNC,
Las Vegas, NV, Jan. 2008, pp. 375–380.

