
IJCST Vol. 3, Issue 3, July - Sept 2012

w w w . i j c s t . c o m International Journal of Computer Science And Technology   521

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

Efficient RSS Feed Polling using Rolling Curl
Neeraj Kumar

Project Manager – Technology (2020MSL)

Abstract
RSS feeds are still one of the most popular source of consuming
information from Internet. Still there is no standard protocol
defined for feed fetching. Most software rely on inefficient
algorithms for polling and fetching feeds from Internet. In this
paper, I am proposing an efficient method of feed polling based
on Moving Average. Proposed method is more efficient than
traditional approaches. It is easy to implement, wastes less CPU
cycles and consumes much less bandwidth. When evaluated,
proposed method was ~500% to ~700% faster than traditional
sequential approach. For implementing this, I have used more
than 15,000 real and unique RSS feeds from different sources
like online newspapers, magazines blogs etc.

Keywords
Feed Polling, php, Rolling Curl, Moving Average

I. Introduction
The main object of interest of this paper is RSS feeds polling.
RSS (originally RDF Site Summary, often dubbed Really Simple
Syndication) is a family of web feed formats used to publish
frequently updated works—such as blog entries, news headlines,
audio, and video—in a standardized format. An RSS document
(which is called a “feed”, “web feed”, or “channel”) includes full
or summarized text, plus meta-data such as publishing dates and
authorship [1]. RSS is transmitted in XML format over Internet.
Feeds are used by news sites, blogs, and social media portals to
announce new content to everyone interested.
RSS is useful for people who regularly use web. It allows them to
easily retrieve the latest content from the sites. It also saves times
by removing the need of visiting website again to read content. And
with the web growing faster than ever, the number of sites offering
RSS feeds is growing rapidly. Generally, RSS feeds are fetched
using software called feed reader. These software, available both
on-line and off-line, poll feeds to retrieve latest content from the
sites offering RSS feeds.
Unfortunately, the technology for consuming RSS feeds relies
heavily on polling. Due to which, RSS feed readers have to poll
RSS feed servers and check for updated content at regular intervals.
This method brings up couple of problems. When a RSS server
is polled for updates two cases can occur, first, that there is no
new content available and second, if the server is polled at large
intervals we might miss some items. Also, every feed behaves
differently. Some RSS feeds may get updated too often and some
may get updated as late as after one year. This leads to wastage
of CPU cycles and bandwidth.
In this paper, I am proposing a method of feed polling using
cURL module. cURL is a computer software project providing a
library and command-line tool for transferring data using various
protocols. The cURL project produces two products, libcurl and
cURL. It was first released in 1997 [2].
I have used cURL as a software of choice, because it supports
easy implementation and data transmission over Internet using
protocols like supporting FTP, FTPS, Gopher, HTTP, HTTPS,
SCP, SFTP, TFTP, Telnet, etc. Also, cURL is available as a library
on many different platforms like Windows, Linux and Mac.

I have also used PHP for implementing and evaluation of
algorithms, because it’s one of the most popular language on
web for programming [4] and the results gained would be more
relevant to web programmers because of the popularity of
language. Nonetheless, algorithms and pseudo-code provided
can be applied to other languages as well.

II. Update Strategies

A. Fix Update
In this method, we set a fixed time interval for polling feed. For
eg. if the fix interval is set at 1 hour, then we poll the feeds at
every 1 hour interval.
The most common fixed intervals chosen by most feed readers
is 1 hour or one day. In my implementation, I have used 1 hour
time interval.
To find the next update interval , we add to current time

:

				 (1)
where is our fix update interval i.e. 60 mins

B. Moving Average
In statistics, a Moving Average, also called rolling average, rolling
mean or running average, is a type of finite impulse response
filter used to analyze a set of datum points by creating a series of
averages of different subsets of the full data set [5].
Moving Average is a better than fix update in a way that it updates
the next update interval continuously and can adapt to the changing
frequency of article publishing. Also, intervals at with previously
published articles are a good predictor for future article.
To find using Moving Average we first calculate the average
of the post time

	

			 (2)
				 (3)

where is average post interval
Above equations are efficient enough to give us a rough estimate
of next update interval. But there is a scope for improving the
precision.
Suppose, if we poll a feed early only to find that there are no new
articles published, then using eq. will yield same . Therefore,
we introduce a virtual item at current time and calculate the
new average publishing interval.

		 (3)
				 (4)

By introducing a virtual item, we can increase the update interval
and skip unnecessary polling and wastage of CPU cycles and
bandwidth.

IJCST Vol. 3, Issue 3, July - Sept 2012 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 522 International Journal of Computer Science And Technology

C. Moving Average with Rolling Curl
As suggested by other authors (David Urbansky, Sandro Reichert,
Klemens Muthmann, Daniel Schuster, Alexander Schill) [8]
Moving Average is efficient enough to provide us an efficient
update interval for our feeds. Still this method does not tell us
how decrease the execution time taken by a program using this
method.
As an improvement, I am suggesting an enhancement to above
method by introducing rolling polling method. This method helps
us in improving the algorithms by increasing the speed of feed
fetching by issuing parallel requests to feed servers.

1. Limitations of Traditional Polling
Traditional method of polling requires us to poll every feed in our
corpus sequentially. This method is not efficient as a lot of CPU
cycles are wasted and we can’t poll next feed until we have fetched
previous one. Therefore the total time taken to fetch feeds becomes
directly proportional to sum of time taken by each feed.

					 (5)

2. Enhanced Feed Polling Using Parallel Fetching
cURL provides us an easy way of querying servers with much
different kind of protocols. cURL provides us two ways of firing
requests to any server, one is in a sequential mode other is in
parallel batch mode.
For firing requests, we use curl_multi(). curl_multi is a great to
process multiple HTTP requests in parallel in PHP. It can be used
to fetch large number of RSS feeds at one time. Unfortunately
the documentation about the curl_multi is limited and therefore,
not everyone knows how to use multi_curl efficiently. As a result,
most of the algorithms are either inefficient or fail entirely when
asked to handle more than a few hundred requests.
A traditional approach while working with curl_multi is that we
have to wait for each set of requests to complete before processing.
The problem is that most implementations of curl_multi wait for
each set of requests to complete before processing them. If there
are too many requests to process at once, they usually get broken
into groups that are then processed one at a time. The problem
with this is that each group has to wait for the slowest request
to download. In a group of 100 requests, all it takes is one slow
one to delay the processing of 99 others. The larger the number
of requests you are dealing with, the more noticeable this latency
becomes.
This can easily be eliminated by implementing a queuing system
similar to Shortest Processing Time (SPT) queuing system. In this,
we process each request as soon as it is completed in a rolling
queue. This primarily eliminates the wasted CPU cycles spent
in waiting state. The result is a faster and more efficient way of
processing large quantities of cURL requests in parallel.

		 (6)
where is total time taken by a set of feed to complete

III. Pseudo Code
Following is the pseudo code implementation of moving average
with rolling curl algorithm.

Initialize corpus to a set of feeds to be fetched next
Initialize rolling queue to
while do:
 if any finishes
 calculate next time interval using eq. 4 and remove
from
 if
 add a to queue Q
end while
where,

is a set of feeds to be fetched next from whole set of feeds
 is rolling queue
 is subset of , is constant
 is a single feed URL

IV. Evaluation
I evaluated the update strategies where goal is to minimize the data
transfer and wait state of CPU to complete a batch of requests.
I compared the data for 2 weeks for all the update strategies
mentioned in this paper.

A. Number of Polls
I also compared the number of polls made to servers over a period
of 2 weeks. These results clearly shows that that fix update strategy,
as expected, fires most request at constant rate. On the other
hand Moving Average and enhanced Moving Average strategies
produces similar results but adapt themselves over time.

B. Network Traffic
Under this evaluation, I compared the amount of network traffic
transferred by these update strategies for a period of 2 weeks.

Fig. 1: Network Traffic

As we can see that fix update transfers the maximum amount of
data over time. Whereas, other two strategies adapt themselves
and perform better over the time. Here we can see that enhanced
Moving Average performs slightly better than Moving Average
and transfers slightly lesser amount of data over time.

C. Time Taken to Finish a Set of Request
Under this analysis, we compared the total time taken by all three
strategies to finish the processing of a set of requests over time.
It can clearly be seen that time taken by fix update is very high
compared to other strategies. Also, the graph is not smooth, which
is because of the nature of sequential polling.

IJCST Vol. 3, Issue 3, July - Sept 2012

w w w . i j c s t . c o m International Journal of Computer Science And Technology   523

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

Fig. 2: Timeliness

Table 1: Average Time Taken by Strategies
Strategy Average Time
Fix Update 31.59
Moving Average 20.26
Moving Average with
Rolling Curl 4.99

Here, we also note that that time taken by enhanced Moving
Average is much less than the Moving Average and fix update
strategy. And it can be clearly inferred from fig. 2 and Table 1 that
enhanced Moving Average takes less time to finish processing of
a set which saves a lot of CPU cycles.

V. Conclusion and Future
In this research I have evaluated all the update strategies proposed
in the paper. And it can easily be inferred from the results and fig.
2 and Table 1 that time taken by Moving Average with rolling curl
has shown significant improvement over algorithm based only
on Moving Average and fix update. The Moving Average with
Rolling curl is ~700% faster than Fix Update and ~500% faster
than Moving Average.
This technique can also be easily extended to build an efficient
sentiment analysis engine. Since the proposed technique is fast
and more accurate, one can for example build a sentiment analysis
engine for a brand and monitor its health on-line.

VI. References
[1]	 Wikipedia (2012). “RSS” [Online] Available: http://www.

en.wikipedia.org/wiki/RSS.
[2]	 Wikipedia (2012). “cURL” [Online] Available: http://www.

en.wikipedia.org/wiki/CURL.
[3]	 Wikipedia (2012). “PHP” [Online] Available: http://www.

en.wikipedia.org/wiki/PHP
[4]	 TIOBE (2012). “TIOBE Programming Community Index

for July 2012” [Online] Available: http://www.tiobe.com/
index.php/content/paperinfo/tpci/index.html

[5]	 Wikipedia (2012). “Moving Average” [Online] Available:
http://www.en.wikipedia.org/wiki/Moving_average

[6]	 Google (2010). “rolling-curl - Project Hosted on Google
Code”, [Online] Available: http://www.code.google.com/p/
rolling-curl/

[7]	 Google (2010). “pubsubhubbub - Project Hosted on Google
Code”, [Online] Available: http://www.code.google.com/p/
pubsubhubbub/

[8]	 Urbansky, D., Reichert, S., Muthmann, K., Schuster, D., and
Schill,“An Optimized Web Feed Aggregation Approach for
Generic Feed Types”, Proceedings of the 5th International
AAAI Conference on Weblogs and Social Media, 638 641,
2011.

Neeraj Kumar received his B.Tech degree
in Computer Science and Engineering from
Haryana Engineering College, Haryana,
India in 2011. He was an Executive Software
Engineer with Virtuos Solutions in 2008 - 2009.
Currently, he is working as a Project Manager
(Technology) with 2020MSL - a leading Social
Media company in India. His research interests

include artificial intelligence, machine learning
and cognitive sciences.

