
IJCST Vol. 3, Issue 3, July - Sept 2012 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 516 International Journal of Computer Science And Technology

“ Web as Data Source”
1Lokhande Dheeraj Bhimrao, 2Rajesh V. Argiddi, 3S. S. Apte

1,2,3Dept. of CSE, Walchand Institute of Technology, Solapur, Maharashtra, India

Abstract
With the phenomenal growth of the WWW, rich data sources on
many different subjects have become available online. Some of
these sources store daily facts that often involve textual geographic
descriptions. These descriptions can be perceived as indirectly geo
referenced data - e.g., addresses, telephone numbers, zip codes
and place names. Under this perspective, the Web becomes a
large geospatial database, often providing up-to-date local or
regional information. In this work we focus on using the Web
as an important source of urban geographic information and
propose to enhance urban Geographic Information Systems (GIS)
using indirectly geo referenced data extracted from the Web. We
describe an environment that allows the extraction of geospatial
data from Web pages, converts them to XML format, and uploads
the converted data into spatial databases for later use in urban
GIS. The effectiveness of our approach is demonstrated by a real
urban GIS application that uses street addresses as the basis for
integrating data from different Web sources, combining these data
with high-resolution imagery.

Keywords
Web Scraping, Semantic Web, XPath

I. Introduction
According to Tim Berners-Lee the World Wide Web is evolving
from a web of documents into a web of data .Companies such
as Amazon1 and Yahoo have recognized the advantage of this
and defined website APIs to add value to their service. However
the bulk of the web’s data is obscured in (X)HTML by a layer of
presentation, with different styles for each website. Additionally,
these styles change over time as each website is updated with
additional content or a new layout. This makes working with data
across websites cumbersome.
This paper describes a software that aims to address this problem.
This is a typical workflow with Our software:

A user wants to access city temperatures directly from bom.1.	
gov.au (the Australian Bureau of Meteorology)
They find a few web pages with city temperatures at bom.2.	
gov.au and give Our software the URLs and the temperatures
displayed in each as a list of strings.
Our software retrieves and parses the webpages and finds 3.	
where the temperatures strings are located in the HTML
source.
These locations are examined and a model of the general 4.	
pattern of occurrence is created that will locate the weather
strings.
Now the user can provide a bom.gov.au URL and Our 5.	
software will automatically apply the model to scrape the
temperatures, e.g. on an hourly basis to generate a temperature
graph from.

Throughout this process the user does not need to concern herself
with the structure of a webpage but can focus in-stead on the
content. The penalty for this ease of use is that Our software can
only reliably be applied to invariant data with variant structure.
Fortunately database-backed websites that inject their content
into a common template are popular, so this restriction is not
unreasonable.

The original motivation for Our software was for use in the ILIAD
project [1], which is an attempt to enhance information access
over Linux troubleshooting-related threads from a range of web
forums. We originally created a set of Perl scripts to scrape the
data, with a different script for each forum. This got us the data
we wanted but was time consuming to create and didn’t provide
an immediate solution for scraping additional forum data from
new sites.
The envisioned ILIAD system would also need to periodically
recrawl these forums for new content. This presents the problem
of forums updating their structure and breaking our scripts, which
would then need to be manually fine-tuned. We wanted to automate
ILIAD as much as possible and make it easier to scrape new
websites and possible to deal with changing webpage structures.
In developing Our software, we identified three ways inwhich a
web page set (i.e. the data served from a given domain or set of
URLs) can be updated:

The content changes while the structure stays the same (e.g. •	
a weather site with different temperatures each day displayed
in the same template)
The content stays the same while the structure changes (e.g. •	
a web forum where the discussion has ended but the layout
is updated)
Both the content and structure change (e.g. an online shop with •	
new products and a new layout to make shopping easier)

Scrapers generally focus on the first case of changing content with
fixed structure . The second case of changing structure is where
most scrapers will fail but Our software will thrive. In the third
case where both content and structure change, Our software offers
a partial solution for small changes for monotonically increasing
data. Even in the instance of the content changing too significantly
for software to generalise over, it is generally possible for a non-
expert to annotate new data and retrain a model within minutes.
Our software is simple to train, can handle changing web content
and/or changing structure, is open source, and is written in Python
so it is platform independent and easy to distribute.

II. Related Work
Many people have the need to extract data from the web and so
a number of scraping tools are already available. This section
will survey the features of some of the most well- known open
source web scrapers available and explain why we felt the need
to develop another one.

A. Chickenfoot
Chickenfoot [3] is a Firefox extension that adds high-level functions
to Javascript that can be executed in the browser. Embedding in
the browser makes Chickenfoot easy to distribute, and additionally
supports interaction with Javascript. Our software only examines
the raw HTML so it is unable to interpret the effect of Javscript
events or AJAX calls. This turned out not to be an issue in our
data,as all of our websites render properly without Javascript.
However this may be a consequence of us choosing popular
sites which are expected to be better engineered than average to
cater for a larger audience. The drawbacks of embedding in the
browser are the limitations imposed by the environment. We found

IJCST Vol. 3, Issue 3, July - Sept 2012

w w w . i j c s t . c o m International Journal of Computer Science And Technology   517

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

Chickenfoot to run very slowly, which may be a consequence of
running in the browser, and would make scraping the amount of
data we are interested in (millions of threads) impractical.
Chickenfoot is primarily aimed at interaction with the browser
but can also be used for scraping with the find() command. Here
is an example script for scraping search results from a Google
search:

go(“www.google.com”)
enter(“chickenfoot”)
click(“Google Search”)
for(m=find(“link”); m.hasMatch; m=m.next) {
var link = m.element;
if(link.getAttribute(“class”) == “l”) {
output(link.href);
}
}

This script searches Google for chickenfoot and returns the
links that have a class of l , which from examining the Google
HTML source is an attribute unique to the search result links.The
Chickenfoot functions are very high level so this is perhaps a better
solution than our original Perl scripts, but it is still dependant on
the structure of the webpage and so does not solve the problem
of dealing with changing webpage structure. Additionally, the
scripts require direct analysis of the HTML mark-up, and thus
require expert knowledge.

B. Piggy Bank
Piggy Bank [4] is a Firefox extension that aims to be a bridge
between the semantic web and what we have now.
The idea is that users submit web scraping scripts along with a
regular expression for the URLs it is relevant to.
Then when the user navigates to a matching webpage PiggyBank
displays the scraped semantic data. It is a fine idea if the work
for creating and maintaining scraping scripts could be distributed
around the world, but unfortunately the community is not there
yet, so Piggy Bank does not solve our scraping problem. At the
time of writing only eleven scripts have been submitted.

C. Sifter
Sifter [5] builds on top of Piggy Bank’s infrastructure but tries to
scrape semantic data automatically from any webpage. However
the scraper has limited scope and only looks for the biggest group
of links in a webpage. This is relevant to a commerce site like
Amazon where the books are a series of links, but usually we will
not want to extract the biggest group of links. For instance the
biggest group of links in a web forum is generally navigation-
related and not directly relevant to a given thread in isolation.
Consequently, Sifter does not solve our scraping problem.

D. Scrubyt
Scrubyt5 is a Ruby library that provides the most similar
functionality to our software of the tools surveyed.
Scrubyt can be given an example string and will then locate
the string in a webpage and extract all similar items from the
webpage. This is similar to Sifter’s goal of extracting product
lists but Scrubyt allows control over what group to extract and is
not limited to links.
Here is the Scrubyt version of the Chickenfoot example to scrape
Google search results:

google_data = Scrubyt::Extractor.define do
fetch “http://www.google.com/ncr”
fill_textfield “q”, “ruby”
submit
link “Ruby Programming Language” do
url “href”, :type => :attribute
end
end

This script searches Google for ruby and then uses the known
title for the official Ruby website to automatically build a model
of the search results. It then extracts the links from
this model.
This is a big improvement from the Chickenfoot example because
it is independent of the webpage structure
(apart from specifying q as the name of the search box).However
the results are mediocre. In our test this script only returns the
first three links because the search results are then interrupted by
a YouTube video. Scrubyt, like
Sifter, can only handle contiguous lists, which limits its application.
Because of this limitation Scrubyt could also not scrape the Linux
Questions web forum because the posts were separated by titles
and user data. Scrubyt can survive a structural update because it
is a content-based scraper, however the types of scraping possible
were too limited for our use.

E. Template Maker
Template Maker 7 is a Python library that takes a different
approach to any of the other tools surveyed. Like Our software,
TemplateMaker is first trained over a set of example webpages.
However unlike Our software, TemplateMaker does not require
their associated text chunks.Instead, TemplateMaker examines the
differences between the HTML of each webpage to determine
what content is static and what is dynamic. The dynamic content is
assumed to be what is interesting in a webpage and what the user
wants to extract, so TemplateMaker generates a model to scrape
this data. Here is an example of how TemplateMaker is used:

>>> from templatemaker import Template
>>> t = Template()
>>> t.learn(“David and Richard”)
>>> t.learn(“1 and 2”)
>>> t.as_text(“[]”)
“[] and []”
>>> t.extract(“Richard and Tim”)
(“Richard”, “Tim”)
In this example TemplateMaker was able to automatically model
the dynamic content and successfully extract Richard and Tim
from the test string. This simple process makes TemplateMaker
the easiest tool to train in this survey. TemplateMaker works well
for trivial strings like those given in the example. However we
found it does not scale for larger strings from real webpages. When
we tried modeling a LinuxQuestions thread with TemplateMaker,
the script stalled for a few minutes before throwing a regular
expression exception for trying to match too many terms. To avoid
this exception we then tried a simpler hand-crafted set of web
pages and from this TemplateMaker managed to return a third
of the dynamic data. Scraping just a third of the data is poor
performance for a relatively simple web page.
From examining the generated model we found the reason
for the poor performance was that TemplateMaker did not
handle duplicates well. For instance in our example webpage

IJCST Vol. 3, Issue 3, July - Sept 2012 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 518 International Journal of Computer Science And Technology

when TemplateMaker was comparing the strings Richard and
Tim it interpreted that the second character i was static while
the surrounding text was dynamic, and so the generated model
looked for content surrounding an i .The fundamental problem is
TemplateMaker aims to be content neutral and so treats its input
as a series of characters. Consequently it cannot use the HTML
structure to determine that the text blocks for Richard and Tim
should be treated as a single unit.
TemplateMaker is an interesting tool that takes a novel approach
to web scraping. TemplateMaker only requires example URLs
to train, so it could easily be automatically retrained after a
website structural update. However through our tests we found
that TemplateMaker is unsuitable for scraping large documents
because of performance. We also found it too brittle in its handling
of duplicates to be used reliably for web scraping. Of these tools
only Scrubyt and TemplateMaker can address the problem of
changing webpage structure. However neither of these tools are
flexible enough for our scraping needs. Additionally none of the
tools surveyed take advantage of features from examining a set
of similar web pages .For these reasons we felt justified building
another general purpose web scraping tool.

III. Obtaining Spatial Information from Web Sources
To make it possible to create an environment to integrate Web
pages to spatial location information, we had to meet several
challenges. The first was to extract indirectly geo referenced data
in textual form (such as postal addresses) from the contents of
Web pages. We stress that such information,when available, is
implicit and occurs as any other ordinary string mixed with HTML
markup. In GIS, the process of recognizing geographic context is
referred to as geoparsing, and the process of assigning geographic
coordinates is referred to as geocoding . This section discusses
the efforts to geoparse and to geocode Web pages.
The extracted addresses act as keys to the geocoder. The second
challenge was to establish ways for transforming the extracted
spatial location information in the form they are provided by the
generic public to the form they are stored in a typical GIS. After
that, a set of geographic coordinates corresponding to the addresses
can be obtained, using an address matching function. Finally,
the extracted information was inserted into the GIS database and
superimposed on high-resolution imagery or maps.
The basic procedure for our application is:

To crawl Web sites to collect the pages containing data of •	
interest.
To geoparse the collected pages to extract geographic •	
indication and the relevant data.
To make the data available in an suitable format (in our case, •	
XML).
To geocode the addresses into a coordinate system.•	
To update the GIS database and, finally •	
To integrate information from several geospatial data.•	

The resulting system can be used by municipalities, users with some
kind of urban GIS database, or geographic database designers.
This section describes how step 2 can be accomplished by
deploying the DEByE (Data Extraction By Example) example-
based approach to automatically extract semistructured data. This
approach is more convenient for our application because it lets
the user specify a target structure for the data to be extracted.
Furthermore, the user might be interested in only a subset of
the information encoded in the page. Moreover, DEByE does
not require the user to describe the inherent structure of a whole
page.

A. The DEByE Tool
DEByE is a tool that has been developed by the UFMG Database
Group to generates wrappers for extracting data from Web pages.
It is fully based on a visual paradigm, which allows the user to
specify a set of examples for the objects to be extracted. Example
objects are taken from a sample page of the same Web source
from which other objects (data) will be extracted. By examining
the structure of the Web page and the HTML text surrounding
the example data, the tool derives an Object Extraction Pattern
(OEP), a set of regular expressions that includes information on
the structure of the objects to be extracted and also the textual
context in which the data appear in the Web pages.
The OEP is then passed to a general-purpose wrapper that uses it
to extract data from new pages in the same Web source, provided
that they have structure and contents similar to the sample page, by
applying regular expressions and some structuring operations.
DEByE currently operates as a Web service, to be used by any
application that wishes to provide data extraction functionality
to end users. For general data extraction solutions, a DEByE
interface based on the paradigm of nested tables is used, which is
simple, intuitive, and yet powerful enough to describe hierarchical
structures that are very common in data available on the Web. The
sample pages are displayed in the upper window,also called the
source window. The lower window, also called the table window,
is used to assemble example objects.The user can select pieces
of data of interest from the source window and .paste. them on
the respective columns of the table window. After specifying the
example objects,the user can select the .Generate Wrapper. button
to generate the corresponding OEP, which encompasses structural
and textual information on the objects present in the sample page.
Once generated, this OEP is used by an extractor module that will
perform the actual data extraction of new objects and then will
output them using an XML-based representation. DEByE is also
capable of dealing with more complex objects, by using a so-
called bottom-up assembly strategy, explained in [14]. Fig. shows
a snapshot of a user session with an example object in the lower
window and the extracted objects showed in HTML format in the
upper window. Fig. presents an overview of the whole DEByE
approach. The two modules called Graphical User Interface (GUI)
and Extractor compose the
DEByE tool.

Fig. 2: Modules of the DEByE Tool and Their Role in the Data
Extraction Process

IV. Methodology
In this section, we present the full pipeline architecture of our
software, from retrieving and parsing each seed and test document,
to identifying the document extents within each seed document
that match with the text chunk(s), and generating the model in

IJCST Vol. 3, Issue 3, July - Sept 2012

w w w . i j c s t . c o m International Journal of Computer Science And Technology   519

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

the form of a generalised XPath describing the positions of the
text chunks in the seed documents.
To help illustrate the stages involved in this process we will use the
simple HTML document in Figure as an ongoing seed document
example. Assuming that the user is interested
in scraping only the temperatures for tomorrow across the three
cities, the list of text chunks would be <22,22,26>.

A. Parse
The first step is to parse each HTML document into a form
which is more amenable to both positional indexing (seed and
test documents) and pattern generation (seed documents only).
This takes the form of partitioning the document into individual
nodes, as defined by the elements in the (X)HTML structure,
and identifying the text associated with each. The underlying
assumption here is that each text chunk follows element boundaries,
and that we simply need to identify the relative position of the
element which best defines the extent of each text chunk. Note
that the elements form a hierarchy relative to the nesting of the
HTML mark-up, and that both internal and terminal elements are
indexed for their text content.
To perform the element partitioning, we chose the Python lxml
module,8 which uses BeautifulSoup9 to resolve bad mark-up and
then stores the results in a tree using the Element Tree module.10
We chose to use ElementTree over

 <html>
 <body>

 Weather
 forecast

 <table>
 <tr>
 <th>City</th>
 <th>Today</th>
 <th>Tomorrow</th>
 </tr>
 <tr>
 <td>Melbourne</td>
 <td>20</td>
 <td>22</td>
 </tr>
 <tr>
 <td>Sydney</td>
 <td>25</td>
 <td>22</td>
 </tr>
 <tr>
 <td>Adelaide</td>
 <td>26</td>
 <td>26</td>
 </tr>
 </table>

 </body>
 </html>

Fig. 2: Example HTML Document (Weather Forecast, Doc1)

BeautifulSoup’s native representation because it supports more
powerful searching and traversing. To make string matching easier
in later stages we prune this tree to remove content that is not
directly displayed in the browser and so cannot be selected by the
user, such as Javascript functions and meta tags (of which there
are none in our example).
Now we have the parsed HTML document stored in an Element
Tree, for each seed document, we create a reverse indexed hash
table with strings as keys and element paths as values for efficiency
in the later stages of processing. To represent the matching locations
we use XPath, which is an XML selection language defined by
the W3C.11 XPath can be used to match a single element or
generalised to match a set of elements, and is well supported by
our chosen XML library lxml. The hash table for our example
weather web page , noting the nesting of elements (e.g.Melbourne
20 22 vs. Melbourne) and also the occurrence of some strings in
multiple locations (e.g. 22).

B. Search
The second step is to identify the element which contains each
text chunk associated with the corresponding seed document.
Unfortunately a direct string query into our string hash table will
in general not work, as the input is a list of text chunks copied
from a rendered web page while Our software operates over the
original HTML.For instance, the heading in the example webpage
HTML is Weather forecast but in the browser the end-of-line
characters (nn and nr) are ignored and the heading becomes just
Weather forecast . Another case is when XML characters such as
< are used in the HTML, which will be rendered as < by the
browser. Additionally, the hash table created in the previous step
indexes the string associated with each element, but the user may
not copy all the text within a tag but just a subset. In performing
this search, we use the elements identified by the document parser
in the first step of processing, and generate a lattice, comparing
the string associated with each seed document element, with each
of the text chunks associated with that document. As such, the
granularity of the sub-document strings we compare each text
chunk to is defined by the document mark-up.
To calculate the similarity between strings we initially tried using
the basic Longest Common Substring (LCS) algorithm, which finds
the longest common sequence between two strings. Ultimately,
however, we found this method unsuitable in its original form, as
even a valid match in our data may have extra characters embedded
in it (such as newlines) that would break up the matching substring.
As a result, we developed a scoring mechanism based on the
output of the LCS algorithm, by first finding all the matching and
non-matching substrings with the Python difib module12. We then
square the substring lengths (to bias towards longer substrings)
and deduct the total non matching lengths from the matching
lengths; all lengths are calculated in characters. This result is
then normalised by dividing by the square of the sum of all the
matching and non-matching lengths so that scores from different
strings can be compared meaningfully. In summary, the score
returned by our modified LCS algorithm become.

V. Results
While developing software we fine-tuned the model generation
to work well on the development sites, and were thus predictably
able to achieve a high macro-averaged F-score of 0.98 . When
we applied Our software to the blind test sites, we were very
encouraged to find that the macro-averaged F-score was almost
identical at 0.97.From the experience of annotating we noticed

IJCST Vol. 3, Issue 3, July - Sept 2012 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 520 International Journal of Computer Science And Technology

that usually when software made a mistake the cause was a
variation in the webpage structure from the examples used to
generate the model. And generally the more complex chunk
types suffered more variation, which contributed to their lower
performance. Software performed perfectly over the simplest
case, type 1, achieving a precision and recall of 1.00 across both
the development and training sets. These websites had no variation
and so were easy for Our software to scrape. Types 2, 3, and 5
performed very well, with the lowest F-score being 0.95 for The
Onion where the author details were incorrectly included when
scraping certain articles. Type 6 had the lowest overall F-score as
a group, with Linux Questions producing the lowest F-score in the
development set. The main reason for this is that in some Linux
Questions threads the responder would embed a code snippet
within a sub-tag. The Linux Questions model failed to scrape this
embedded code snippet because this special case was not present
in the 3 seed documents used to generate the model. If we had
been more careful in our choice of the seed documents, or just
used a larger seed set, the performance over Linux Questions
could have been improved without any change to software.To
test this hypothesis we retrained the model for Linux Questions
with a larger example set of six seed documents that all contained
quotes in their thread posts, and then re annotated 20 web pages
with this new model. As expected the model could now scrape
the quotes, and as a result the recall jumped from 0.89 to 1.00.
However the new model included some non-post data which made
the precision fall from 1.00 to 0.95. Overall the F-score increased
from 0.89 to 0.94, suggesting that this is a more balanced model
and the problem was largely one of not enough data. Recall that
the only manual analysis of the seed documents that was required
was the user manually copying and pasting relevant text chunks
into a text field (or to the command line), such that the increase
from 3 to 6 seed documents still represents a minuscule amount
of user effort.

VII. Conclusion
Our software has met our goals to make web scraping easy and
automatic retraining possible. It has proved a convenient tool for
extracting data from the web. Our approach, based on learning
patterns using XPath, allowed us to produce a system that can
satisfy user needs with high precision and recall with minimal
training. Our software has been tested over different domains
with high effectiveness, and we also showed its adaptability by
going back in time and scraping the Linux Questions site from
2002 with out re-annotating. On this evidence, we believe that
this software can provide a robust and flexible solution for the
problems of dealing with web data.

References
[1]	 T. Baldwin, D. Martinez, R. Penman,"Automatic thread

classification for linux user forum information access",
In Proceedings of the Twelfth Australasian Document
Computing Symposium (ADCS 2007), pp. 72-79, Melbourne,
Australia, 2007.

[2]	 T. Berners-Lee, M. Fischetti,"Weaving the Web", Harper
One, San Francisco, USA, 1999.

[3]	 M. Bolin, M. Webber, P. Rha, T. Wilson, R. Miller,
"Automation and customization of rendered web pages", In
UIST ‘05: Proceedings of the 18th Annual ACM symposium
on User Interface Software and Technology, pp. 163-172,
New York, USA, 2005.

[4]	 D. Huynh, S. Mazzocchi, D. Karger,"Piggy bank: Experience
the semantic web inside your web browser", Web Semantics:
Science, Services and Agents on the World Wide Web, 5, pp.
16-27, 2006.

[5]	 D. Huynh, R. Miller, D. Karger,"Enabling web browsers to
augment web sites’ filtering and sorting functionalities", In
UIST ‘06: Proceedings of the 19th Annual ACM symposium
on User Interface Software and Technology, pp. 125-134,
New York, USA, 2006.

[6]	 M. Schrenk,"Webbots, Spiders, and Screen Scrapers", No
Starch Press, San Francisco, USA, 2007.

[7]	 A. Sugiura, Y. Koseki,"Internetscrap book: automating web
browsing tasks by demonstration", In UIST ‘98: Proceedings
of the 11th annual ACM Symposium on User Interface
Software and Technology,pages 9{18, New York, USA,
1998. 16 [Online] Available: http://wtr.rubyforge.org/

