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Abstract
With the phenomenal growth of the WWW, rich data sources on 
many different subjects have become available online. Some of 
these sources store daily facts that often involve textual geographic 
descriptions. These descriptions can be perceived as indirectly geo 
referenced data - e.g., addresses, telephone numbers, zip codes 
and place names. Under this perspective, the Web becomes a 
large geospatial database, often providing up-to-date local or 
regional information. In this work we focus on using the Web 
as an important source of urban geographic information and 
propose to enhance urban Geographic Information Systems (GIS) 
using indirectly geo referenced data extracted from the Web. We 
describe an environment that allows the extraction of geospatial 
data from Web pages, converts them to XML format, and uploads 
the converted data into spatial databases for later use in urban 
GIS. The effectiveness of our approach is demonstrated by a real 
urban GIS application that uses street addresses as the basis for 
integrating data from different Web sources, combining these data 
with high-resolution imagery. 
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I. Introduction
According to Tim Berners-Lee the World Wide Web is evolving 
from a web of documents into a web of data .Companies such 
as Amazon1 and Yahoo  have recognized the advantage of this 
and defined website APIs to add value to their service. However 
the bulk of the web’s data is obscured in (X)HTML by a layer of 
presentation, with different styles for each website. Additionally, 
these styles change over time as each website is updated with 
additional content or a new layout. This makes working with data 
across websites cumbersome.
This paper describes a  software that aims to address this problem. 
This is a typical workflow with Our software:

A user wants to access city temperatures directly from bom.1.	
gov.au (the Australian Bureau of Meteorology)
They find a few web pages with city temperatures at bom.2.	
gov.au and give Our software the URLs and the temperatures 
displayed in each as a list of strings.
Our software retrieves and parses the webpages and finds 3.	
where the temperatures strings are located in the HTML 
source.
These locations are examined and a model of the general 4.	
pattern of occurrence is created that will locate the weather 
strings.
Now the user can provide a bom.gov.au URL and Our 5.	
software will automatically apply the model to scrape the 
temperatures, e.g. on an hourly basis to generate a temperature 
graph from.

Throughout this process the user does not need to concern herself 
with the structure of a webpage but can focus in-stead on the 
content. The penalty for this ease of use is that Our software can 
only reliably be applied to invariant data with variant structure. 
Fortunately database-backed websites that inject their content 
into a common template are popular, so this restriction is not 
unreasonable.

The original motivation for Our software was for use in the ILIAD 
project [1], which is an attempt to enhance information access 
over Linux troubleshooting-related threads from a range of web 
forums. We originally created a set of Perl scripts to scrape the 
data, with a different script for each forum. This got us the data 
we wanted but was time consuming to create and didn’t provide 
an immediate solution for scraping additional forum data from 
new sites.
The envisioned ILIAD system would also need to periodically 
recrawl these forums for new content. This presents the problem 
of forums updating their structure and breaking our scripts, which 
would then need to be manually fine-tuned. We wanted to automate 
ILIAD as much as possible and make it easier to scrape new 
websites and possible to deal with changing webpage structures.
In developing Our software, we identified three ways inwhich a 
web page set (i.e. the data served from a given domain or set of 
URLs) can be updated:

The content changes while the structure stays the same (e.g. •	
a weather site with different temperatures each day displayed 
in the same template)
The content stays the same while the structure changes (e.g. •	
a web forum where the discussion has ended but the layout 
is updated)
Both the content and structure change (e.g. an online shop with •	
new products and a new layout to make shopping easier)

Scrapers generally focus on the first case of changing content with 
fixed structure . The second case of changing structure is where 
most scrapers will fail but Our software will thrive. In the third 
case where both content and structure change, Our software offers 
a partial solution for small changes for monotonically increasing 
data. Even in the instance of the content changing too significantly 
for  software to generalise over, it is generally possible for a non-
expert to annotate new data and retrain a model within minutes.
Our software is simple to train, can handle changing web content 
and/or changing structure, is open source, and is written in Python 
so it is platform independent and easy to distribute.

II. Related Work
Many people have the need to extract data from the web and so 
a number of scraping tools are already available. This section 
will survey the features of some of the most well- known open 
source web scrapers available and explain why we felt the need 
to develop another one.

A. Chickenfoot
Chickenfoot [3] is a Firefox extension that adds high-level functions 
to Javascript that can be executed in the browser. Embedding in 
the browser makes Chickenfoot easy to distribute, and additionally 
supports interaction with Javascript. Our software only examines 
the raw HTML so it is unable to interpret the effect of Javscript 
events or AJAX calls. This turned out not to be an issue in our 
data,as all of our websites render properly without Javascript.
However this may be a consequence of us choosing popular 
sites which are expected to be better engineered than average to 
cater for a larger audience. The drawbacks of embedding in the 
browser are the limitations imposed by the environment. We found 
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Chickenfoot to run very slowly, which may be a consequence of 
running in the browser, and would make scraping the amount of 
data we are interested in (millions of threads) impractical.
Chickenfoot is primarily aimed at interaction with the browser 
but can also be used for scraping with the find() command. Here 
is an example script for scraping search results from a Google 
search:

go(“www.google.com”)
enter(“chickenfoot”)
click(“Google Search”)
for(m=find(“link”); m.hasMatch; m=m.next) {
var link = m.element;
if(link.getAttribute(“class”) == “l”) {
output(link.href);
}
}

This script searches Google for chickenfoot and returns the 
links that have a class of  l , which from examining the Google 
HTML source is an attribute unique to the search result links.The 
Chickenfoot functions are very high level so this is perhaps a better 
solution than our original Perl scripts, but it is still dependant on 
the structure of the webpage and so does not solve the problem 
of dealing with changing webpage structure. Additionally, the 
scripts require direct analysis of the HTML mark-up, and thus 
require expert knowledge.

B. Piggy Bank
Piggy Bank [4] is a Firefox extension that aims to be a bridge 
between the semantic web and what we have now.
The idea is that users submit web scraping scripts along with a 
regular expression for the URLs it is relevant to.
Then when the user navigates to a matching webpage PiggyBank 
displays the scraped semantic data. It is a fine idea if the work 
for creating and maintaining scraping scripts could be distributed 
around the world, but unfortunately the community is not there 
yet, so Piggy Bank does not solve our scraping problem. At the 
time of writing only eleven scripts have been submitted.

C. Sifter
Sifter [5] builds on top of Piggy Bank’s infrastructure but tries to 
scrape semantic data automatically from any webpage. However 
the scraper has limited scope and only looks for the biggest group 
of links in a webpage. This is relevant to a commerce site like 
Amazon where the books are a series of links, but usually we will 
not want to extract the biggest group of links. For instance the 
biggest group of links in a web forum is generally navigation-
related and not directly relevant to a given thread in isolation. 
Consequently, Sifter does not solve our scraping problem.

D. Scrubyt
Scrubyt5 is a Ruby library that provides the most similar 
functionality to our software of the tools surveyed.
Scrubyt can be given an example string and will then locate 
the string in a webpage and extract all similar items from the 
webpage. This is similar to Sifter’s goal of extracting product 
lists but Scrubyt allows control over what group to extract and is 
not limited to links.
Here is the Scrubyt version of the Chickenfoot example to scrape 
Google search results:

google_data = Scrubyt::Extractor.define do
fetch “http://www.google.com/ncr”
fill_textfield “q”, “ruby”
submit
link “Ruby Programming Language” do
url “href”, :type => :attribute
end
end

This script searches Google for ruby and then uses the known 
title for the official Ruby website to automatically build a model 
of the search results. It then extracts the links from
this model.
This is a big improvement from the Chickenfoot example because 
it is independent of the webpage structure
(apart from specifying q as the name of the search box).However 
the results are mediocre. In our test this script only returns the 
first three links because the search results are then interrupted by  
a  YouTube  video. Scrubyt,   like
Sifter, can only handle contiguous lists, which limits its application. 
Because of this limitation Scrubyt could also not scrape the Linux 
Questions web forum because the posts were separated by titles 
and user data. Scrubyt can survive a structural update because it 
is a content-based scraper, however the types of scraping possible 
were too limited for our use.

E. Template Maker
Template Maker 7 is a Python library that takes a different 
approach to any of the other tools surveyed. Like Our software, 
TemplateMaker is first trained over a set of example webpages. 
However unlike Our software, TemplateMaker does not require 
their associated text chunks.Instead, TemplateMaker examines the 
differences between the  HTML of each webpage to determine 
what content is static and what is dynamic. The dynamic content is 
assumed to be what is interesting in a webpage and what the user 
wants to extract, so TemplateMaker generates a model to scrape 
this data. Here is an example of how TemplateMaker is used:

>>> from templatemaker import Template
>>> t = Template()
>>> t.learn(“<b>David and Richard</b>”)
>>> t.learn(“<b>1 and 2</b>”)
>>> t.as_text(“[]”)
“<b>[] and []</b>”
>>> t.extract(“<b>Richard and Tim</b>”)
(“Richard”, “Tim”)
In this example TemplateMaker was able to automatically model 
the dynamic content and successfully extract Richard and Tim 
from the test string. This simple process makes TemplateMaker 
the easiest tool to train in this survey. TemplateMaker works well 
for trivial strings like those given in the example. However we 
found it does not scale for larger strings from real webpages. When 
we tried modeling a LinuxQuestions thread with TemplateMaker, 
the script stalled for a few minutes before throwing a regular 
expression exception for trying to match too many terms. To avoid 
this exception we then tried a simpler hand-crafted set of web 
pages and from this TemplateMaker managed to return a third 
of the dynamic data. Scraping just a third of the data is poor 
performance for a relatively simple web page.
From examining the generated model we found the reason 
for the poor performance was that TemplateMaker did not 
handle duplicates well. For instance in our example webpage 
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when TemplateMaker was comparing the strings Richard and 
Tim it interpreted that the second character i was static while 
the surrounding text was dynamic, and so the generated model 
looked for content surrounding an i .The fundamental problem is 
TemplateMaker aims to be content neutral and so treats its input 
as a series of characters. Consequently it cannot use the HTML 
structure to determine that the text blocks for Richard and Tim 
should be treated as a single unit.
TemplateMaker is an interesting tool that takes a novel approach 
to web scraping. TemplateMaker only requires example URLs 
to train, so it could easily be automatically retrained after a 
website structural update. However through our tests we found 
that TemplateMaker is unsuitable for scraping large documents 
because of performance. We also found it too brittle in its handling 
of duplicates to be used reliably for web scraping. Of these tools 
only Scrubyt and TemplateMaker can address the problem of 
changing webpage structure. However neither of these tools are 
flexible enough for our scraping needs. Additionally none of the 
tools surveyed take advantage of features from examining a set 
of similar web pages .For these reasons we felt justified building 
another general purpose web scraping tool.

III. Obtaining Spatial Information from Web Sources
To make it possible to create an environment to integrate Web 
pages to spatial location information, we had to meet several 
challenges. The first was to extract indirectly geo referenced data 
in textual form (such as postal addresses) from the contents of 
Web pages. We stress that such information,when available, is 
implicit and occurs as any other ordinary string mixed with HTML 
markup. In GIS, the process of recognizing geographic context is 
referred to as geoparsing, and the process of assigning geographic 
coordinates is referred to as geocoding . This section discusses 
the efforts to geoparse and to geocode Web pages.
The extracted addresses act as keys to the geocoder. The second 
challenge was to establish ways for transforming the extracted 
spatial location information in the form they are provided by the 
generic public to the form they are stored in a typical GIS. After 
that, a set of geographic coordinates corresponding to the addresses 
can be obtained, using an address matching function. Finally, 
the extracted information was inserted into the GIS database and 
superimposed on high-resolution imagery or maps.
The basic procedure for our application is:

To crawl Web sites to collect the pages containing data of •	
interest.
To geoparse the collected pages to extract geographic •	
indication and the relevant data. 
To make the data available in an suitable format (in our case, •	
XML).
To geocode the addresses into a coordinate system.•	
To update the GIS database and, finally •	
To integrate information from several geospatial data.•	

The resulting system can be used by municipalities, users with some 
kind of urban GIS database, or geographic database designers.
This section describes how step 2 can be accomplished by 
deploying the DEByE (Data Extraction By Example) example-
based approach to automatically extract semistructured data. This 
approach is more convenient for our application because it lets 
the user specify a target structure for the data to be extracted. 
Furthermore, the user might be interested in only a subset of 
the information encoded in the page. Moreover, DEByE does 
not require the user to describe the inherent structure of a whole 
page. 

A. The DEByE Tool
DEByE is a tool that has been developed by the UFMG Database 
Group to generates wrappers for extracting data from Web pages. 
It is fully based on a visual paradigm, which allows the user to 
specify a set of examples for the objects to be extracted. Example 
objects are taken from a sample page of the same Web source 
from which other objects (data) will be extracted. By examining 
the structure of the Web page and the HTML text surrounding 
the example data, the tool derives an Object Extraction Pattern 
(OEP), a set of regular expressions that includes information on 
the structure of the objects to be extracted and also the textual 
context in which the data appear in the Web pages. 
The OEP is then passed to a general-purpose wrapper that uses it 
to extract data from new pages in the same Web source, provided 
that they have structure and contents similar to the sample page, by 
applying regular expressions and some structuring operations. 
DEByE currently operates as a Web service, to be used by any 
application that wishes to provide data extraction functionality 
to end users. For general data extraction solutions, a DEByE 
interface based on the paradigm of nested tables is used, which is 
simple, intuitive, and yet powerful enough to describe hierarchical 
structures that are very common in data available on the Web. The 
sample pages are displayed in the upper window,also called the 
source window. The lower window, also called the table window, 
is used to assemble example objects.The user can select pieces 
of data of interest from the source window and .paste. them on 
the respective columns of the table window. After specifying the 
example objects,the user can select the .Generate Wrapper. button 
to generate the corresponding OEP, which encompasses structural 
and textual information on the objects present in the sample page. 
Once generated, this OEP is used by an extractor module that will 
perform the actual data extraction of new objects and then will 
output them using an XML-based representation. DEByE is also 
capable of dealing with more complex objects, by using a so-
called bottom-up assembly strategy, explained in [14]. Fig. shows 
a snapshot of a user session with an example object in the lower 
window and the extracted objects showed in HTML format in the 
upper window. Fig. presents an overview of the whole DEByE 
approach. The two modules called Graphical User Interface (GUI) 
and Extractor compose the
DEByE tool.

Fig. 2: Modules of the DEByE Tool and Their Role in the Data 
Extraction Process

IV. Methodology
In this section, we present the full pipeline architecture of  our 
software, from retrieving and parsing each seed and test document, 
to identifying the document extents within each seed document 
that match with the text chunk(s), and generating the model in 
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the form of a generalised XPath describing the positions of the 
text chunks in the seed documents.
To help illustrate the stages involved in this process we will use the 
simple HTML document in Figure  as an ongoing seed document 
example.  Assuming that the user is interested
in scraping only the temperatures for tomorrow across the three 
cities, the list of text chunks would be <22,22,26>.

A. Parse
The first step is to parse each HTML document into a form 
which is more amenable to both positional indexing (seed and 
test documents) and pattern generation (seed documents only). 
This takes the form of partitioning the document into individual 
nodes, as defined by the elements in the (X)HTML structure, 
and identifying the text associated with each. The underlying 
assumption here is that each text chunk follows element boundaries, 
and that we simply need to identify the relative position of the 
element which best defines the extent of each text chunk. Note 
that the elements form a hierarchy relative to the nesting of the 
HTML mark-up, and that both internal and terminal elements are 
indexed for their text content.
To perform the element partitioning, we chose the Python lxml 
module,8 which uses BeautifulSoup9 to resolve bad mark-up and 
then stores the results in a tree using the Element Tree module.10 
We chose to use ElementTree over

 <html>
 <body>
 <span class=”heading”>
 Weather
 forecast
 </span>
 <table>
 <tr>
 <th>City</th>
 <th>Today</th>
 <th>Tomorrow</th>
 </tr>
 <tr>
 <td>Melbourne</td>
 <td>20</td>
 <td>22</td>
 </tr>
 <tr>
 <td>Sydney</td>
 <td>25</td>
 <td>22</td>
 </tr>
 <tr>
 <td>Adelaide</td>
 <td>26</td>
 <td>26</td>
 </tr>
 </table>
 <span></span>
 </body>
 </html>

Fig. 2: Example HTML Document (Weather Forecast, Doc1)

BeautifulSoup’s native representation because it supports more 
powerful searching and traversing. To make string matching easier 
in later stages we prune this tree to remove content that is not 
directly displayed in the browser and so cannot be selected by the 
user, such as Javascript functions and meta tags (of which there 
are none in our example).
Now we have the parsed HTML document stored in an Element 
Tree, for each seed document, we create a reverse indexed hash 
table with strings as keys and element paths as values for efficiency 
in the later stages of processing. To represent the matching locations 
we use XPath, which is an XML selection language defined by 
the W3C.11 XPath can be used to match a single element or 
generalised to match a set of elements, and is well supported by 
our chosen XML library lxml. The hash table for our example 
weather web page , noting the nesting of elements (e.g.Melbourne 
20 22 vs. Melbourne) and also the occurrence of some strings in 
multiple locations (e.g. 22).

B. Search
The second step is to identify the element which contains each 
text chunk associated with the corresponding seed document. 
Unfortunately a direct string query into our string hash table will 
in general not work, as the input is a list of text chunks copied 
from a rendered web page while Our  software  operates over the 
original  HTML.For instance, the heading in the example webpage 
HTML is Weather forecast but in the browser the end-of-line 
characters (nn and nr) are ignored and the heading becomes just 
Weather forecast . Another case is when XML characters such as 
&lt; are used in the HTML, which will be rendered as < by the 
browser. Additionally, the hash table created in the previous step 
indexes the string associated with each element, but the user may 
not copy all the text within a tag but just a subset. In performing 
this search, we use the elements identified by the document parser 
in the first step of processing, and generate a lattice, comparing 
the string associated with each seed document element, with each 
of the text chunks associated with that document. As such, the 
granularity of the sub-document strings we compare each text 
chunk to is defined by the document mark-up.
To calculate the similarity between strings we initially tried using 
the basic Longest Common Substring (LCS) algorithm, which finds 
the longest common sequence between two strings. Ultimately, 
however, we found this method unsuitable in its original form, as 
even a valid match in our data may have extra characters embedded 
in it (such as newlines) that would break up the matching substring. 
As a result, we developed a scoring mechanism based on the 
output of the LCS algorithm, by first finding all the matching and 
non-matching substrings with the Python difib module12. We then 
square the substring lengths (to bias towards longer substrings) 
and deduct the total non matching lengths from the matching 
lengths; all lengths are calculated in characters. This result is 
then normalised by dividing by the square of the sum of all the 
matching and non-matching lengths so that scores from different 
strings can be compared meaningfully. In summary, the score 
returned by our modified LCS algorithm become.

V. Results
While developing  software we fine-tuned the model generation 
to work well on the development sites, and were thus predictably 
able to achieve a high macro-averaged F-score of 0.98 . When 
we applied Our software to the blind test sites, we were very 
encouraged to find that the macro-averaged F-score was almost 
identical at 0.97.From the experience of annotating we noticed 
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that usually when software made a mistake the cause was a 
variation in the webpage structure from the examples used to 
generate the model. And generally the more complex chunk 
types  suffered more variation, which contributed to their lower 
performance.  Software performed perfectly over the simplest 
case, type 1, achieving a precision and recall of 1.00 across both 
the development and training sets. These websites had no variation 
and so were easy for Our software to scrape. Types 2, 3, and 5 
performed very well, with the lowest F-score being 0.95 for The 
Onion where the author details were incorrectly included when 
scraping certain articles. Type 6 had the lowest overall F-score as 
a group, with Linux Questions producing the lowest F-score in the 
development set. The main reason for this is that in some Linux 
Questions threads the responder would embed a code snippet 
within a sub-tag. The Linux Questions model failed to scrape this 
embedded code snippet because this special case was not present 
in the 3 seed documents used to generate the model. If we had 
been more careful in our choice of the seed documents, or just 
used a larger seed set, the performance over Linux Questions 
could have been improved without any change to  software.To 
test this hypothesis we retrained the model for Linux Questions 
with a larger example set of six seed documents that all contained 
quotes in their thread posts, and then re annotated 20 web pages 
with this new model. As expected the model could now scrape 
the quotes, and as a result the recall jumped from 0.89 to 1.00. 
However the new model included some non-post data which made 
the precision fall from 1.00 to 0.95. Overall the F-score increased 
from 0.89 to 0.94, suggesting that this is a more balanced model 
and the problem was largely one of not enough data. Recall that 
the only manual analysis of the seed documents that was required 
was the user manually copying and pasting relevant text chunks 
into a text field (or to the command line), such that the increase 
from 3 to 6 seed documents still represents a minuscule amount 
of user effort.

VII. Conclusion
Our software has met our goals to make web scraping easy and 
automatic retraining possible. It has proved a  convenient tool for 
extracting data from the web. Our approach, based on learning 
patterns using XPath, allowed us to produce a system that can 
satisfy user needs with high precision and recall with minimal 
training. Our software has been tested over different domains 
with high effectiveness, and we also showed its adaptability by 
going back in time and scraping the Linux Questions site from 
2002 with out re-annotating. On this evidence, we believe that 
this software can provide a robust and flexible solution for the 
problems of dealing with web data.
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