
IJCST Vol. 3, Issue 3, July - Sept 2012 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 506 International Journal of Computer Science And Technology

Woa Based Implementation of SOA
1Ashish Verma, 2Ruchi Dave, 3 Pooja Parnami

1,2,3Dept. of CSE, Suresh Gyan Vihar University, Jaipur, Rajasthan, India

Abstract
Service-Oriented Architectures (SOA) is an Emerging approach
that addresses the requirements of loosely coupled, standards-based,
and protocol independent distributed computing. A Distributed
Computing is always required a tight coupled relationship between
all working services. Basically SOA provides a large number of
objects that are working in modular services as reusable software
components. Generally there are no any alternative for SOA to
provide flexibility and reduction in the cost of services which
are basically used in the IT field as reusable components. This
functionality is provided by the Enterprise Service Bus (ESB) that
is an integration platform that utilizes Web services standards to
support a wide variety of communications patterns over multiple
transport protocols and deliver value-added capabilities for SOA
applications. But in this Context we are introducing the “WEB 2.0”
which is used to provide reusable IT components dynamically.
In this paper we will introduce the methodology of design WOA
using the concept of SOA. The big picture will follow the existing
SOA model. In particular, this WOA methodology comprises
conceptual as well as realization issues and breaks WOA design
down into three distinct phases.

Keywords
Design Methodology, Reusable Components and Web oriented
Architecture

I. Introduction
The World Wide Web Consortium (W3C) for example refers to
SOA as ‘A set of components which can be invoked, and whose
interface descriptions can be published and discovered’. We see
similar definitions being used elsewhere; it’s a very technical
perspective in which architecture is considered a technical
implementation. This is odd, because the term architecture is
more generally used to describe a style or set of practices—for
example the style in which something is designed and constructed,
for example Georgian buildings.
Service-Oriented Architectures (SOAs) provide the basis of
distributed application frameworks (W3C 2004b) where software
components are provided as modular and reusable services. The
benefits of a SOA are seen in the flexibility of business processes
which consist of loosely coupled services, and the resulting
potential cost decrease, complexity reduction, reusability potential,
and high flexibility. Conceptual modeling is an important factor
here, as it not only refers to data modeling but also needs to take
process design into consideration. It’s would be easy to conclude
that the move to Service Orientation really commenced with Web
services—about some years ago. However, Web services were
merely a step along a much longer road. The notion of a service
is an integral part of component thinking, and it is clear that
distributed architectures were early attempts to implement service-
oriented architecture. What’s important to recognize is that Web
services are part of the wider picture that is SOA. The Web service
is the programmatic interface to a capability that is in conformance
with WSnn protocols. So Web services provide us with certain
architectural characteristics and benefits—specifically platform
independence, loose coupling, self-description, and discovery—
and they can enable a formal separation between the provider and

consumer because of the formality of the interface. Moreover, the
various standards for easing” the creation of a SOA (e.g., Web
services, UDDI, SOAP, WSDL).

Fig. 1: The Summarized Map of SOA and WOA

On the other hand, recent developments in the context of what is
commonly termed “Web 2.0” show how easy it can be to link or
compose (“mesh”) IT components dynamically, so that original
SOA goals like flexibility, reusability, or reduction of complexity
can indeed be reached by relatively simple means. Examples include
mashups based on Google Maps (like www.housingmaps.com) or
applications like Yahoo!Pipes (pipes.yahoo.com) these are based
on Web Application Programming Interfaces (Web APIs), which
allow using the functionality of a Web application by a simple
(most commonly REST-based) service layer. An interesting and
emerging concept in this context is the Web-oriented architecture
(WOA), which represents a specialization of a SOA obtained by
emphasizing the use of simple Web 2.0 technologies and standards.
Its important aspect is the fact that no additional standards have
been defined, but existing ones such as HTTP, SSL,
Or XML are employed. As far as REST and WOA are concerned,
you don’t need anything more complex than HTTP, one of the
most scalable, proven, and widespread protocols on the planet,
along with HTTP’s verbs: GET, POST, PUT, DELETE.

II. WOA Versus SOA
There are some basic differences in terms of design and practical
considerations in between WOA and SOA, both are used to develop
reusable IT components but still they have some competition issues
and just an evolution of focus which are as follows:

The only real difference between traditional SOA and the •	
concept of WOA is that WOA advocates REST, an increasingly
popular, powerful, and simple method of leveraging HTTP.
SOAP, the most common Web service standard also has •	
mandatory dependency system that can be problematic, but
using REST it removes this problem.

IJCST Vol. 3, Issue 3, July - Sept 2012

w w w . i j c s t . c o m International Journal of Computer Science And Technology   507

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

WOA itself is a reflection of the Classic Reach vs. Rich •	
Argument, in that richness is an outcome of robustness and
complexity but cuts down how much reach you have to others,
particularly in heterogeneous communities. The modern SOA
technologies and architectures have indeed become a near-
morass of complex standards, protocols, and products.
REST doesn’t handle enterprise issues like two-phase commit, •	
messaging, asynchronicity. Whereas the SOAP which used
in SOA will handle all of these issues.
Although both are using for the purpose of Web services •	
with different standards but we can say WOA is the most
interoperable, easiest to implement, and most highly scalable
technique for building great, open Web services that anyone
can use.

III. Requirements and Goals
The existing methodologies for designing a SOA mostly focus on
Web Services as the core connection element. In contrast, a WOA
uses Web services as well as REST-ful services, i.e., services that
can be invoked via REST. As a consequence, a WOA approach
is not bound to a specific technology. While Web services can be
described by a WSDL document for REST-ful services there is
no explicit standard for their description. However, a reasonable
solution for the time being is the Web Application Description
Language (WADL) which is much simpler than WSDL, yet allows
the description of important features of a REST-ful service such
as resource, input, output, and even a textual description. Most
services today come with textual descriptions only (as can be seen,
for example, at www.programmableweb.com), so no matching
algorithm can be specified. Therefore, most services have to be
“discovered” by the software architects themselves. This can be
done in different ways, but our approach currently assumes that the
search for suitable services is done by hand in the second phase.
As long as no accepted semantic service description is available
and used for a large portion of the services offered on the Web.
One of the important points of our approach is the usage of well-
known and well-understood formal languages in every phase,
including BPMN for process descriptions and WSDL as well as
WADL for the functional description of individual services. The
advantage of BPMN is that it is easy to read and still allows for
a powerful visual design of processes.
The following simplified steps are identified to model, construct,
and implement a WOA:

Development a set of inter-connected business process •	
models.
Refinement of these process models with functional details •	
of each service task.
Provisioning of the process models with explicit data flow •	
(especially a specification of which data is used as input for
a service request).
Implementation of the defined process models (in a •	
development environment or workflow engine).

IV. Design and Implementation Methodology
In our Example we are taking Vehicle Booking System which
primarily includes Check Vehicle Module, Booking of Vehicle
Module and Payment of Vehicle Module, from the generic
requirements we can easily identified the details requirements
and we have chosen Flow Diagrams to show the flow of processes
and business modules which are using in our “Macro-Booking”
System as per shown in the figs. 2, 3, 4

Fig. 2: Flow Diagram of Check Vehicle Module

Fig. 3: Flow Diagram of Booking of Vehicle Module

Fig. 4: Flow Diagram of Payment of Vehicle Module

The Business Scenario of (Check Vehicle Module) is as Follows
in fig. 2:

IJCST Vol. 3, Issue 3, July - Sept 2012 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 508 International Journal of Computer Science And Technology

Firstly Customer will enter in the Service by entering its •	
search details like Vehicle type, Vehicle Module and Color
etc. [1].
If its requirements does match with our system then service •	
will notify that particular vehicle is available [2-3].
After that search is available then it will show the details of •	
particular vehicle [5]
If customer requirements does not match then customer have •	
to re-enter again with new search and checking details of
vehicle [4].

The business scenario of (Booking of Vehicle Module) is as
follows in fig. 3:

Now if customer wants to book a vehicle then first they have •	
to login [1] after that service will prompt the user to confirm
its order or booking [2].
Customer can check its details of vehicle and can also be •	
made some changes if he wants [3].
After all of these steps Customer will confirm to book a •	
particular vehicle.
Now the next module comes is Payment in which customer •	
have to enter for further processing.

The business scenario of (Payment of Vehicle Module) is as
follows in fig. 4:

Again customer has to login first [1].•	
This login will generate a UNIQUE PAYMENT ID for a •	
particular customer [2].
After confirmation of payment service will generate a •	
BOOKING ID of a particular vehicle [3].
In this way we can print a mini itinerary receipt of vehicle •	
[4].

Table 1: Web Service Operations
Web Method Name Web Service Description

Check Availability of
Vehicle

This Web service will check the
availability of vehicle as per user
entered criteria.

Confirmation of Vehicle This web service will make
confirmation of vehicles.

Booking of Vehicle This web service is used to book
the vehicle.

Payment of Vehicle This web service is used to make
payment of vehicle.

Check Credit Validity This Web service is used to check
the validity of declined credit.

V. Implementation Results
As we have mentioned earlier that we want to create a REST-ful
Web Service, for this purpose we have taken example of Vehicle
Booking System, the Representational State Transform (REST)
is not a standard but it uses the standards like:

HTTP•	
URL’s•	
XML/HTML/GIF/JPEG/etc (Resource Representations)•	
text/xml, text/html, image/gif, image/jpeg, etc (MIME •	
Types)

In Principles of designing REST-ful Service we should adopt
some key points these are as follows:

The key to creating Web Services in a REST network (i.e., •	
the Web) is to identify all of the conceptual entities that you
wish to expose as services. See figure 2, 3, 4.

Create a URL to each resource. The resources should be •	
nouns, not verbs. For example, do not use this:

http://www.parts-depot.com/parts/getPart?id=00345
Note the verb, getPart. Instead, use a noun:
 http://www.partsdepot.com/parts/00345

All Resources should be accessible via HTTP GET, PUT, •	
POST and DELETE Methods.
Categorize your resources according to whether clients can •	
just receive a representation of the resource, or whether clients
can modify (add to) the resource.

For further implementation we have used VISUAL STUDIO
.NET, SQL, HTTP Methods(GET,PUT,POST and DELETE) and
some generic development tools for creating interface apart from
interface we have used Microsoft IIS Web Server for responding
to the Clients. HTML, AJAX, CSS and JAVASCRIPT is used to
integrate the Client Interface.

VI. Conclusion
In this paper we have presented a WOA design methodology
which abstracts from technology and complex standards and
only uses simple Web standards like HTTP, SSL, and XML for
communication and simple data flow syntax to describe data
mappings for any request within a process.
As a result of implementation, WOA approach cut-off development
time of the web services. The services created are reusable and
flexible to be integrated with other web service applications.
Conclusively, WOA is a buzzword today and many organizations
and industries are in race to adopt WOA in order to have competitive
advantages for services delivery. However, it is important to ensure
that the right approach is selected and the right capabilities are
provisioned to ensure successful realization. It is recommended to
select an approach or methodology based on the primary business
drivers for adoption practice.
As mentioned in the Introduction, we have seen that our
methodology is not just purely conceptual, but rather a hybrid
one that meshes conceptual as well as physical aspects of a WOA.
We consider this a consequence of the fact that a WOA no longer
needs to follow the strict layering of a SOA, but we believe that
it is exactly this aspect what will make them more successful
than SOAs.

References
[1]	 W3C (2003, May 14). Web Services Architecture, [Online]

Available: http://www.w3.org/TR/2003/WD-ws-arch-
20030514/

[2]	 [Online] Available: https://www.ibm.com/developerworks/
library/ws-soa-design1

[3]	 W3C (2004b),"Web service architecture", [Online] Available:
http://www.w3.org/TR/ws-arch/wsa.pdf

[4]	 "Web services business process execution language version
2.0".

[5]	 W3C (2007),"Web services description language2.0",
[Online] Available: http://www.w3.org/TR/wsdl20-primer/

IJCST Vol. 3, Issue 3, July - Sept 2012

w w w . i j c s t . c o m International Journal of Computer Science And Technology   509

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

Ashish Verma Received his Bachelor of
Engineering Degree from University of
Rajasthan in Year 2009 in Information
Technology Branch and he is Doing his
Master in Technology from Suresh Gyan
Vihar University in Software Engineering,
He is a Former Software IT Trainer of
HCL,India and Worked as an Assistant
Professor in IT Department at Poornima
Group of Colleges, right Now he is
serving to his best knowledge in ANAND

INTERNATIONAL COLLEGE OF ENGINEERING, Jaipur. He
Presented and Published 6 National and 2 International Paper
in Different Conferences and in Journals, His area of Interest is
Software Engineering and Web Services.

