
IJCST Vol. 3, Issue 3, July - Sept 2012

w w w . i j c s t . c o m International Journal of Computer Science And Technology   477

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

Efficient Data Structures For Multi-Mode Dispatching
1Ishan Jawa, 2Gurpreet Singh, 3Reena Sharma

1,2,3Doon Valley Institute of Engg. and Technology, Kurukshetra University, Haryana India

Abstract
The problem of dispatching in object oriented languages is the
problem of determining the most specialized method to invoke for
calls at run-time. This can be a critical component of execution
performance. A number of results, including [Muthukrishnan and
Muller SODA’96, Ferragina and Muthukrishnan ESA’96, Al-strup
et al. FOCS’98], have studied this problem and in particular
provided various efficient data structures for the monomethod
dispatching problem. A paper of Ferragina, Muthukrishnan and
de Berg [STOC’99] addresses the multi-method dispatching
problem.
Our main result is a linear space data structure for binary
dispatching that supports dispatching in logarithmic time. Using
the same query time as Ferragina et al. this result improves the
space bound with a logarithmic factor.

I. Introduction
In object oriented languages the modular units are abstract data
types called classes and selectors. Each selector has possibly
multiple implementations—denoted methods—each in a different
class. The classes are arranged in a class hierarchy, and a class can
inherit methods from its superclasses (classes above it in the class
hierarchy). Therefore, when a selector s is invoked in a class c, the
relevant method for s inherited by class c has to be determined. The
dispatching problem for object oriented languages is to determine
the most specialized method to invoke for a function call. This
specialization depends on the actual arguments of the method
call at run-time and can be a critical component of execution per
formance in object oriented languages. Most of the commercial
object oriented languages rely on dispatching of methods
with only one argument, the so-called mono-method or unary
dispatching problem. A number of papers, see e.g.,[10, 15] ,
have studied the unary dispatching problem, and Ferragina
and Muthukrishnan [10] provide a linear space data structure
that sup-ports unary dispatching in log-logarithmic time.
However, the techniques in these papers do not apply to the
more general multi-method dispatching problem in which more
than one method argument is used for the dispatching. Multi-
method dispatching has been identified as a powerful feature
in object oriented languages supporting multi-methods such
as Cecil [3], CLOS [2], Dylan [4]. Several recent results have
attempted to deal with d-ary dispatching in practice (see [11]
for an extensive list). Ferragina et al. [11] provided the first non-
trivial data structures, and, quoting this paper, several experimental
object oriented languages’ “ultimately success and impact in
practice depends, among other things, on whether multi-method
dispatching can be supported ef-ficiently”.
Our result is a linear space data structure for the binary dispatching
problem, i.e., multi-method dispatching for methods with at most
two arguments. Our data structure uses linear space and supports
dispatching in logarithmic time. Using the same query time as
Ferragina et al. [11], this result improves the space bound with a
logarithmic factor. Before we provide a precise formulation of our
result, we will formalize the general d-ary dispatching problem.
Definition (Multiple Dispatching Problem). Let T be a rooted tree
denoting the class hierarchy. Each node in T corresponds to a class,

and T defines a partial order on the set of classes:
	 A B 	 A is an ancestor of B
(not necessarily a proper ancestor).
If A is a proper ancestor of B we write A B. Similarly, B A
(B A) if B is a (proper) descendant of A. Let M be the set of
functions. Each function takes a number of classes as arguments.
A function call is a query of the form s(A1, . . . , Ad) where s is
the name of a function in M and A1, . . . , Ad are class instances/
objects. Let s(A1, . . . , Ad) be such a query. We say that s(B1, . .
. , Bd) is applicable for s(A1, . . . , Ad) Bi Ai for all i ∈ {1,
. . . , d}.
The most specialized function for a query s(A1, . . . , Ad) is the
function s(B1, . . . , Bd) such that
1. s(B1, . . ., Bd) is applicable for s(A1, . . ., Ad),
2. for every other function s(C1, . . ., Cd) applicable for s(A1, . . .,
Ad) we have Ci Bi for all i.
There might not be a most specialized method, i.e., we might
have two applicative methods s(B1, . . . , Bd) and s(C1, . . . , Cd)
where Bi Ci and Cj Bj for some indices 1 ≤ i, j ≤ d. That is,
neither method is more specialized than the other. Multi-method
dispatching is to find the most specialized applicable method in
M if it exists. If it does not exist or in case of ambiguity, “no
applicable method” resp. “ambiguity” is reported instead.
The d-ary dispatching problem is to construct a data structure that
supports multi-method dispatching with functions having up to d
arguments, where M is static but queries are online.
The cases d = 1 and d = 2 are called the unary and binary dispatching
problems, respectively. Let N denote the number of classes in the
class hierarchy, m the number of methods in M , and M the number
of distinct function names in M.
In this paper we focus on the binary dispatching problem which
is of “particular interest” quoting Ferragina et al. [11].
We assume that the size of T is O(m). If this is not the case we can
map nodes that does not participate in any method to their closest
ancestor that does participate in some method in O(n) time.

A. Results
Our main result is a data structure for the binary dispatching
problem using O(m) space and query time O(log m) on a unit-
cost RAM with word size logarithmic in N with O(N + m
(loglog m)2) time for preprocessing. By the use of a reduction
to a geometric problem, Ferragina et al. [11], obtain similar time
bounds within space O(m log m). Furthermore they show how
the case d = 2 can be generalized for d > 2 at the cost of factor
logd−2 m in the time and space bounds.
Our result is obtained by a very different approach in which we
employ a dynamic to static transformation technique. To solve
the binary dispatching problem we turn it into a unary dispatching
problem — a variant of the marked ancestor problem as defined
by Alstrup et al. [1], in which we maintain a dynamic set of
methods. The unary problem is then solved persistently. We solve
the persistent unary problem combining the technique by Dietz [5]
to make a data structure fully persistent and the technique from
[1] to solve the tree color problem. The technique of using a
persistent dynamic one-dimensional data structure to solve a static
two-dimensional problem is a standard technique [17]. What is

IJCST Vol. 3, Issue 3, July - Sept 2012 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 478 International Journal of Computer Science And Technology

new in our technique is that we use the class hierarchy tree to
denote the time (give the order on the versions) to get a fully
persistent data structure. This gives a “branch-ing” notion for
time, which is the same as what one has in a fully persistent data
structure where it is called the version tree. This technique is
different from the plane sweep technique where a plane-sweep is
used to give a partially persistent data structure. A top-down tour
of the tree corresponds to a plane-sweep in the partially persistent
data structures.

C. Related and Previous Work
For the unary dispatching problem the best known bound is O(N
+ m) space, O(loglog N) query time and expected O(N + m)
preprocessing time. The expectation in the preprocessing time
is due to perfect hashing in a van Emde Boas predecessor data
structure [15, 10].
For the d-ary dispatching, d ≥ 2, the result of Ferragina et al. [11]
is a data structure using space O(m (t logm/logt)d−1) and query
time O((logm/logt)d−1loglogN), where t is a parameter 2 ≤ t ≤
m. For the case t = 2 they are able to improve the query time to
O(logd−1m) using fractional cascading. They obtain their results
by reducing the d-ary dispatching problem to a point-enclosure
problem in d dimensions: Given a point q, check whether there is
a smallest rectangle containing q. In the context of the geometric
problem, Ferragina et al. also present applications to approximate
dictionary matching.
Eppstein and Muthukrishnan [9] looked at a similar problem
called packet classification. Here there is a database of m filters
available for preprocessing. A packet filter i in an IP network is
a collection of d-dimensional ranges [li, ri]×· · ·× [li, ri], an action
Ai, and a priority pi. An IP packet P is a d-dimensional vector
of values [P1, . . . , Pd]. A filter i applies to packet P if Pj∈ [li , ri] for j = 1, . . . , d.
In this case the packet classification problem is essentially the same
as the multiple dispatching problem. For the cased = 2 Eppstein and
Muthukrishnan gave an algorithm using space O(m1+o(1)) and
query time O(loglog m), or O(m1+ε) and query time O(1). They
reduced the problem to a geometric problem, very similar to the one
in [11]. To solve the problem they used the plane-sweep approach
to turn the static two-dimensional rectangle query problem into a
partial persistent dynamic one-dimensional problem.

II. Preliminaries
In this section we give some basic concepts which are used
throughout the paper. Definition 1. Let T be a rooted tree. The
set of all nodes in T is denoted V (T). Let T(v) denote the sub-
tree of T rooted at a node v ∈ V(T). If w ∈ V (T(v)) then v is an
ancestor of w, denoted v w, and if w ∈ V (T(v))\{v} then v is a
proper ancestor of w, denoted v w. If v is a (proper) ancestor of
w then w is a (proper) descendant of v. In the rest of the chapter
all trees are rooted trees.
Let C be a set of colors. A labeling l(v) of a node v ∈ V (T) is a
subset of C, i.e., l(v) → C. A labeling l : V(T) → 2C of a treeT is
a set of labelings for the nodes in T . Given a labeling of a tree
T, the first ancestor of w ∈ T with color c is the node v ∈ T such
that v ∈ w, c ∈ l(v), and no node on the path between v and w
is labeled c.

A. Persistent Data Structures
Data structures that one encounters in traditional algorithmic
settings are ephemeral, i.e., previous states are lost when an update
is made. In a persistent data structure also previous versions of
the data structure can be queried. The concept of persistent data

structures was introduced by Driscoll et al. [8].
Definition (Persistence). A data structure is partially persistent
if all previous versions remain available for queries but only the
newest version can be modi-fied. A data structure is fully persistent
if it allows both queries and updates of previous versions. An
update may operate only on a single version at a time, that is,
combining two or more versions of the data structure to form a
new one is not allowed.
In addition to its ephemeral arguments a persistent update or query
takes as an argument the version of the data structure to which the
query or update refers. Let the version graph be a directed graph
where each node corresponds to a version and there is an edge
from node v1 to a node v2 if and only if V2 was created by an
update operation to V1. The version graph for a partially persistent
data structure is a path, and for a fully persistent data structure
it is a tree.

B. Known Results
Dietz [5] showed how to make any data structure fully persistent
on a unit-cost RAM with logarithmic word size by an efficient
implementation of the version tree. A data structure with worst case
query time O(Q(n)) and update time O(F (n)) making worst case
O(U (n)) memory modifications can be made fully persistent using
O(Q(n) loglog n) worst case time per query and O(F (n) loglog n)
expected amortized time per update using O(U(n) n) space.

III. The Tree Color Problem
Definition (Tree color problem). Let T be a rooted tree with n
nodes, where we associate a set of colors with each node of T .
The tree color problem is to maintain a data structure with the
following operations:
color(v, c): add c to v’s set of colors,
i.e., l(v) ← l(v) {c},
uncolor(v, c): remove c from v’s set of colors,
i.e., l(v) ← l(v) \ {c},
firstcolor(v, c): find the first ancestor of v with color c (this may
be v itself).
The incremental version of this problem does not support uncolor,
the decremental problem does not support color, and the fully
dynamic problem supports both update operations.

A. Known Results
Alstrup et al. [1] showed how to solve the tree color problem on a
unit cost RAM with logarithmic word size in expected update time
O(loglog n) for both color and uncolor, and query time O(logn/
loglogn), using linear space and preprocessing time. The expected
update time is due to hashing. Thus the expectation can be removed
at the cost of using more space. We need worst case time when
we make the data structure persistent because data structures with
amortized/expected time may perform poorly when made fully
persistent, since expensive operations might be performed many
times.
Querying and updating a version tree of a fully persistent data
structure is an incremental version of the tree color problem. Dietz
[5] showed how to solve the incremental tree color problem in
O(loglog n) amortized time per operation using linear space, when
the nodes are colored top-down and each node has at most one
color.
Definition 4. We need a data structure to support insert and
predecessor queries on a set of integers from {1..n} . This can be
solved in worst case in O(loglogn) time per operation on a RAM
uing the data structure of van Emde boas [18] (VEB). We show

IJCST Vol. 3, Issue 3, July - Sept 2012

w w w . i j c s t . c o m International Journal of Computer Science And Technology   479

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

how to modify this data structure such that it uses only O(1)
memory modifications per update.

IV. The Bridge Color Problem
The binary dispatching problem (d = 2) can be formulated as
the following tree problem, which we call the bridge color
problem.
Definition 5 (Bridge Color Problem). Let T1 and T2 be two rooted
trees. Between T1 and T2 there are a number of edges—called
bridges—of different colors. Let C be the set of colors. A bridge
is a triple (c, v1, v2) ∈ C × V (T1) × V (T2) and is

Fig. 1: An Example of the Bridge Color Problem. The solid lines
are tree edges and the dashed and dotted lines are bridges of
color c and c′, respectively. firstcolorbridge(c,v,u) returns b3.
firstcolorbridge(c′,r,s) returns ambiguity since neither b1 or b2
is closer than the other. denoted by c(v1, v2). The bridge color
problem is to construct a data structure which supports the query
firstcolorbridge(c,v1,v2).
firstcolorbridge(c, v1, v2) Find a bridge c(w1, w2) such that:
1. w1 v1 and w2 v2.
2. There is no other bridge c(w1, w2) such that w1 w1 v1 or
w2 w2 v2.
If there is no bridge satisfying the first condition return NIL. If
there is a bridge satisfying the first condition but not the second
then return ”ambi-guity”.
See fig. 1 for an example of the bridge color problem. The binary
dispatching problem can be reduced to the bridge color problem
the following way. Let T1 and T2 be copies of the tree T in the
binary dispatching problem. For every method s(v1, v2) ∈ M make
a bridge of color s between v1 ∈ V (T1) and v2 ∈ V (T2).
The problem is now to construct a data structure that supports
firstcolorbridge.
The objective of the remaining of this paper is to show the
following theorem:
Theorem 1. Using expected O(m loglog m) time for preprocessing
and O(m) space, the query firstcolorbridge can be supported in
worst case time O(log m) per operation, where m is the number
of bridges.

V. A Data Structure for the Bridge Color Problem
Let B be a set of bridges (|B| = m). As mentioned in the introduction
we can assume that the number of nodes in the trees involved
in the bridge color problem is O(m), i.e., |V (T1)| + |V (T2)| =
O(m). In this section we present a data structure that supports
firstcolorbridge in O(log m) time per query using O(m) space for
the bridge color problem.
We first reduce the static bridge color problem to the dynamic tree
color problem. For each node v ∈ V (T1) we define the labeling lv of
T2 as follows. The labeling of a node w ∈ V (T2) contains color c if w
is the endpoint of a bridge of color c with the other endpoint among
ancestors of v. Formally, c ∈ lv (w) if and only if there exists a node
u v such that c(u, w) ∈ B. In addition to each labeling lv , we need
to keep the following extra information stored in a sparse array

H(v): For each pair (w, c) ∈ V (T2) × C, where lv(w) contains
color c, we keep the first ancestor v′ of v from which there is a
bridge c(v′, w) ∈ B. Note that this set is sparse, i.e., we can use
a sparse array to store it. Similar define the symmetric labelings
for T1. See fig. 2. for an example.
For each labeling lv of T2, where v ∈ V (T1), we will construct
a data structure for the static tree color problem. The query
firstcolorbridge(c, u, w) can then be answered by the following
queries in this data structure.
First perform the query firstcolor(w, c) in the data structure for
the labeling lu of the tree T2. If this query reports NIL there is
no bridge to report, and we return NIL. Otherwise let w′ be the
reported node. We make a lookup in H(u) to determine the bridge
b such that b = c(u′, w′) ∈ B. By definition b is the bridge over
(u, w′) with minimal distance between w and w′. However, it is
possible that there is a bridge (u′′, w′′) over (u, w) where dist(u,u”)
< dist(u,u’). By a symmetric computation with the data structure
for the labeling l(w) of T1 we can detect this. If so we return
“ambiguity”. Otherwise we return the unique first bridge b. See
fig. 2 for an example.

Fig. 2: Example of labeling. The labeling for v ∈ V (T1), lv : lv (r)
= {c1, c2}, lv (s) = {c3}, lv (t) = {c1}, lv(u) = {c2}. The labeling lw
for w ∈ V (T1) is the same as lv except that lw(u) is empty.

Explicit representation of the tree color data structures for each of
the labelings lv for all nodes v in T1 and T2 would take up space
Ω(m2). Fortunately, the data structures overlap a lot: Let v, w ∈
V (T1), u ∈V (T2), and let v w. Then lv (u) lw (u). We take
advantage of this in a simple way. We make a fully persistent
version of the dynamic tree color data structure. The idea is that
the above set of O(m) tree color data structures corresponds to a
persistent version, each created by one of O(m) updates in total.
Formally, suppose we have generated the data structure for the
labeling lv, for v in T1. Let w be the child of node v in T1. We
construct the data structure for the labeling lw by updating the
persistent structure for lv by inserting the color corresponding
to all bridges with endpoint w (including updating H(v)). Since
the data structure is fully persistent, we can repeat this for each
child of v, and hence obtain data structures for all the labelings for
children of v. In other words, we can form all the data structures
for the labeling lv for nodes v ∈ V (T1), by updates in the persistent
structures according to a top-down traversal of T1. Another way
to see this, is that T1 is denoting the time (giving the order of the
versions). That is, the version tree has the same structure as T1.
Similarly, we construct the labelings for T1 by a traversal of T2.
We conclude with the following lemma:
Lemma 1. A static data structure for the bridge color problem can
be constructed by O(m) updates to a fully persistent version of
the dynamic tree color problem.

IJCST Vol. 3, Issue 3, July - Sept 2012 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m 480 International Journal of Computer Science And Technology

A. Reducing the Number of Memory Modifications in the
Tree Color Problem
Alstrup et al. [1] gives the following upper bounds for the tree
color problem for a tree of size m. Expected O(loglog m) update
time for both color and uncolor, and query time O(log m/loglog
m), with linear space and preprocessing time.
For our purposes we need a slightly stronger result, i.e., updates that
only make worst case O(1) memory modifications. By inspection
of the dynamic tree color algorithm, the bottle-neck in order to
achieve this, is the use of the van Emde Boas predecessor data
structure [18] (VEB). Using a standard technique by Dietz and
Raman [6] to implement a fast predecessor structure we get the
fol-lowing result.
Theorem 2. Insert and predecessor queries on a set of integers
from {1, . . . , n} can be performed in O(loglog n) worst case
time per operation using worst case O(1) memory modifications
per update.
To prove the theorem we first show an amortized result1. The
elements in our predecessor data structure is grouped into buckets
S1, . . . , Sk, where we maintain the following invariants:
(1) max Si < min Si+1		 for i = 1, . . . k − 1, and
(2)1/2 log n < |Si| ≤ 2 log n	for all i.
We have k ∈ O(n/ log n). Each Si is represented by a balanced
search tree with O(1) worst case update time once the position of
the inserted or deleted element is known and query time O(log
m), where m is the number of nodes in the tree [12-13]. This gives
us update time O(loglog n) in a bucket, but only O(1) memory
modifications per update. The minimum element si of each bucket
Si is stored in a VEB.
When a new element x is inserted it is placed in the bucket Si
such that si < x< si+1,or in S1 if no such bucket exists. Finding the
correct bucket is done by a predecessor query in the VEB. This
takes O(log logn) time. Inserting the element in the bucket also
takes O(log logn) time, but only O(1) memory modifications.
When a bucket Si becomes to large it is split into two buckets
of half size. This causes a new element to be inserted into the
VEB and the binary trees for the two new buckets have to be
build. An insertion into the VEB takes O(loglog n) time and uses
the same number of memory modifications. Building the binary
search trees uses O(log n) time and the same number of memory
modifications. When a bucket is split there must have been at least
log n insertions into this bucket since it last was involved in a
split. That is, splitting and inserting uses O(1) amortized memory
modifications per insertion.
Lemma 2. Insert and predecessor queries on a set of integers from
{1, . . ., n} can be performed in O(loglogn) worst case time for
predecessor and O(log logn) amortized time for insert using O(1)
amortized number of memory modifications per update.
We can remove the amortization by the following technique by
Raman [100] called thinning at the cost of making the bucket
sizes Θ(log2n).
Let α > 0 be a sufficiently small constant. Define the criticality
of a bucket to be:
ρ(b) = (1/α log n) max{0, size(b) − 1.8 log2 n}.1
A bucket b is called critical if ρ(b) > 0. We want to ensure that
size(b) ≤ 2 log2n. To maintain the size of the buckets every α log
n updates take the most critical bucket (if there is any) and move
logn elements to a newly created empty adjacent bucket. A bucket
rebalancing uses O(log n) memory modifications and we can
thus perform it with O(1) memory modifications per update spread
over no more than α log n updates.

We now show that the buckets never get too big. The criticality of
all buckets can only increase by 1 between bucket rebalancings.
We see that the criticality of the bucket being rebalanced is
decreased, and no other bucket has its criticality increased by
the rebalancing operations. We make use of the following lemma
due to Raman:
Lemma 3 (Raman). Let x1, . . ., xn be real-valued variables, all
initially zero. Repeatedly do the following:
(1) Choose n non-negative real numbers a1, . . . , an such that
	 ∑n i=1 ai = 1, and set
	 xi ← xi + ai for 1 ≤ i ≤ n.
 (2) Choose an xi such that xi = maxj {xj }, and set xi ← max{xi − c,
0} for some constant c ≥ 1.
Then each xi will always be less than ln (n + 1), even when c =
1.
Apply the lemma as follows: Let the variables of Lemma
3 be the criti-calities of the buckets. The reals ai are the
increases in the criticalities between rebalancings and c
= 1/α. We see that if α ≤ 1 the criticality of a bucket will
never exceed ln n + 1 = O(log n). Thus for sufficiently small α
the size of the buckets will never exceed 2 log2 n. This completes
the proof of Theorem 2.
We need worst case update time for color in the tree color problem
in order to make it persistent. The expected update time is due to
hashing, and can be removed at the cost of using more space. We
now use Theorem 2 to get the following lemma.
Lemma 4. Using linear time for preprocessing, we can maintain a
tree with complexity O(loglog m) for color and complexity O(log
m/loglog m) for firstcolor, using O(1) memory modifications per
update, where m is the number of nodes in the tree.

B. Making the Data Structure Persistent
Using Dietz’ method [5] to make a data structure fully persistent
on the data structure from Lemma 4, we can construct a fully
persistent version of the tree color data structure.
Taking advantage of the fact that the structure of the version tree
is known from the beginning, we can get faster preprocessing
time for our bridge color data structure.
Since the structure of the version tree is known from the beginning
we can construct the tree color data structure for the version tree, by
first to running through the whole version tree in an Euler tour, and
remembering which updates are made in which node. Then we can
construct the tree color data structure for the version tree using the
data structure for the static tree color problem by Muthukrishnan
and Muller [15]. This uses expected linear preprocessing time
and linear space using worst-case O(loglog m) time per query.
As mentioned earlier the expectation in the preprocessing time
can be removed.
Another possibility is to use a modified version of Dietz’ method to
make a data structure fully persistent. Recall that this method gives
an expected amortized slowdown of O(loglog m). The amortization
comes from the problem of maintaining order in a list. Since we
know the structure of the version tree from the beginning we can
get rid of this amortization. This gives a significant simplification
of the construction of our bridge color data structure. This data
structure uses expected O(loglog m) time per update, and the
preprocessing time for our bridge color problem is thus a factor of
O(loglog m) bigger than in the approach using a static tree color
data structure for the version tree.

IJCST Vol. 3, Issue 3, July - Sept 2012

w w w . i j c s t . c o m International Journal of Computer Science And Technology   481

 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

References
[1]	 S. Alstrup, T. Husfeldt, T. Rauhe,"Marked ancestor problems

(extended abstract)", In IEEE Symposium on Foundations
of Computer Science (FOCS), pp. 534-543, 1998.

[2]	 D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene,
G. Kiczales, D. A. Moon,"Common LISP object system
specification X3J13 document 88-002R", ACM SIGPLAN
Notices, 23, 1988. Special Issue, September 1988.

[3]	 C. Chambers,"Object-oriented multi-methods in Cecil", In
O. L. Madsen, editor, ECOOP ’92", European Conference
on Object-Oriented Programming, Utrecht, The Netherlands,
volume 615 of Lecture Notes in Computer Science, pp. 33-
56. Springer-Verlag, New York, NY, 1992.

[4]	 Inc. Apple Computer. Dylan Interim Reference
Manual.1994

[5]	 P. F. Dietz,"Fully persistent arrays. In F. Dehne, J.-R. Sack,
and N. San-toro, editors, Proceedings of the Workshop on
Algorithms and Data Structures, volume 382 of Lecture
Notes in Computer Science, pp. 67-74, Berlin, Aug. 1989.
Springer-Verlag.

[6]	 P. F. Dietz, R. Raman,"Persistence, amortization and
randomization", In Proc. 2nd ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 78-88, 1991.

[7]	 M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. M. auf der
Heide, H. Rohnert, R. E. Tarjan,"Dynamic perfect hashing:
Upper and lower bounds", In 29th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 524-531.
IEEE Computer Society Press, 1988.

[8]	 J. R. Driscoll, N. Sarnak, D. D. Sleator, R. E. Tarjan,"Making
data structures persistent", Journal of Computer and Systems
Sciences, 38(1), pp. 86-124, 1989.

[9]	 D. Eppstein, S. Muthukrishnan,"Internet packet filter
manegement and rectangle geometry", In Proceedings of the
12th annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2001

[10]	P. Ferragina, S. Muthukrishnan,"Efficient dynamic method-
lookup for object oriented languages. In European Symposium
on Algorithms, Vol. 1136 of Lecture Notes in Computer
Science, pp. 107-120, 1996.

[11]	P. Ferragina, S. Muthukrishnan, M. de Berg,"Multi-method
dispatching: A geometric approach with applications to
string matching problems", In Proceedings of the Thirty-
First Annual ACM Symposium on Theory of Computing,
pp. 483-491, May 1999.

[12]	R. Fleischer,"A simple balanced search tree with O(1) worst-
case update time", International Journal of Foundations of
Computer Science, 7, pp. 137-149, 1996.

[13]	C. Levcopoulos, M. Overmars,"A balanced search tree with
O(1) worstcase update time", Acta Informatica, 26, pp. 269-
277, 1988.

[14]	K. Mehlhorn, S. Näher,"Bounded ordered dictionaries in
O(log log n) time and O(n) space", Information Processing
Letters, 35, pp. 183-189, 1990

[15]	S. Muthukrishnan, M. M üller,"Time and space efficient
method-lookup for object-oriented programs (extended
abstract)", In Proceedings of the Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 42-51, Jan.1996.

[16]	R. Raman. Eliminating Amortization: On Data Structures
with Guaranteed Response Time. Ph.D thesis, University
of Rochester, Computer Science Department, October 1992.
Technical Report TR439.

[17]	N. Sarnak, R. E. Tarjan. Planar point location using persistent
search trees. Communications of the ACM, 29, pp. 669-679,
1986

[18]	P. van Emde Boas,"Preserving order in a forest in less than
logarithmic time and linear space", Information Processing
Letters, 6, pp. 80-82, 1978.

