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Abstract 
The problem of dispatching in object oriented languages is the 
problem of determining the most specialized method to invoke for 
calls at run-time. This can be a critical component of execution 
performance. A number of results, including [Muthukrishnan and 
Muller SODA’96, Ferragina and Muthukrishnan ESA’96, Al-strup 
et al. FOCS’98], have studied this problem and in particular 
provided various efficient data structures for the monomethod 
dispatching problem. A paper of Ferragina, Muthukrishnan and 
de Berg [STOC’99] addresses the multi-method dispatching 
problem. 
Our main result is a linear space data structure for binary 
dispatching that supports dispatching in logarithmic time. Using 
the same query time as Ferragina et al. this result improves the 
space bound with a logarithmic factor. 

I. Introduction
In object oriented languages the modular units are abstract data 
types called classes and selectors. Each selector has possibly 
multiple implementations—denoted methods—each in a different 
class. The classes are arranged in a class hierarchy, and a class can 
inherit methods from its superclasses (classes above it in the class 
hierarchy). Therefore, when a selector s is invoked in a class c, the 
relevant method for s inherited by class c has to be determined. The 
dispatching problem for object oriented languages is to determine 
the most specialized method to invoke for a function call. This 
specialization depends on the actual arguments of the method 
call at run-time and can be a critical component of execution per 
formance in object oriented languages. Most of the commercial 
object oriented languages rely on dispatching of methods 
with only one argument, the so-called mono-method or unary 
dispatching problem. A number of papers, see e.g.,[10, 15] , 
have studied the unary dispatching problem, and Ferragina 
and Muthukrishnan [10] provide a linear space data structure 
that sup-ports unary dispatching in log-logarithmic time. 
However, the techniques in these papers do not apply to the 
more general multi-method dispatching problem in which more 
than one method argument is used for the dispatching. Multi- 
method dispatching has been identified as a powerful feature 
in object oriented languages supporting multi-methods such 
as Cecil [3], CLOS [2], Dylan [4]. Several recent results have 
attempted to deal with d-ary dispatching in practice (see [11] 
for an extensive list). Ferragina et al. [11] provided the first non-
trivial data structures, and, quoting this paper, several experimental 
object oriented languages’ “ultimately success and impact in 
practice depends, among other things, on whether multi-method 
dispatching can be supported ef-ficiently”. 
Our result is a linear space data structure for the binary dispatching 
problem, i.e., multi-method dispatching for methods with at most 
two arguments. Our data structure uses linear space and supports 
dispatching in logarithmic time. Using the same query time as 
Ferragina et al. [11], this result improves the space bound with a 
logarithmic factor. Before we provide a precise formulation of our 
result, we will formalize the general d-ary dispatching problem. 
Definition (Multiple Dispatching Problem). Let T be a rooted tree 
denoting the class hierarchy. Each node in T corresponds to a class, 

and T defines a partial order on the set of classes: 
	 A B 	  A is an ancestor of B
(not necessarily a proper ancestor). 
If A is a proper ancestor of B we write A  B. Similarly, B  A 
(B  A) if B is a (proper) descendant of A. Let M be the set of 
functions. Each function takes a number of classes as arguments. 
A function call is a query of the form s(A1, . . . , Ad) where s is 
the name of a function in M and A1, . . . , Ad are class instances/
objects. Let s(A1, . . . , Ad) be such a query. We say that s(B1, . . 
. , Bd) is applicable for s(A1, . . . , Ad)  Bi  Ai for all i ∈ {1, 
. . . , d}. 
The most specialized function for a query s(A1, . . . , Ad) is the 
function s(B1, . . . , Bd) such that 
1. s(B1, . . ., Bd) is applicable for s(A1, . . ., Ad), 
2. for every other function s(C1, . . ., Cd) applicable for s(A1, . . ., 
Ad) we have Ci  Bi for all i. 
There might not be a most specialized method, i.e., we might 
have two applicative methods s(B1, . . . , Bd) and s(C1, . . . , Cd) 
where Bi  Ci and Cj  Bj for some indices 1 ≤ i, j ≤ d. That is, 
neither method is more specialized than the other. Multi-method 
dispatching is to find the most specialized applicable method in 
M if it exists. If it does not exist or in case of ambiguity, “no 
applicable method” resp. “ambiguity” is reported instead. 
The d-ary dispatching problem is to construct a data structure that 
supports multi-method dispatching with functions having up to d 
arguments, where M is static but queries are online. 
The cases d = 1 and d = 2 are called the unary and binary dispatching 
problems, respectively. Let N denote the number of classes in the 
class hierarchy, m the number of methods in M , and M the number 
of distinct function names in M. 
In this paper we focus on the binary dispatching problem which 
is of “particular interest” quoting Ferragina et al. [11]. 
We assume that the size of T is O(m). If this is not the case we can 
map nodes that does not participate in any method to their closest 
ancestor that does participate in some method in O(n) time. 

A. Results 
Our main result is a data structure for the binary dispatching 
problem using O(m) space and query time O(log m) on a unit-
cost RAM with word size logarithmic in N with O(N + m 
(loglog m)2) time for preprocessing. By the use of a reduction 
to a geometric problem, Ferragina et al. [11], obtain similar time 
bounds within space O(m log m). Furthermore they show how 
the case d = 2 can be generalized for d > 2 at the cost of factor 
logd−2 m in the time and space bounds. 
Our result is obtained by a very different approach in which we 
employ a dynamic to static transformation technique. To solve 
the binary dispatching problem we turn it into a unary dispatching 
problem — a variant of the marked ancestor problem as defined 
by Alstrup et al. [1], in which we maintain a dynamic set of 
methods. The unary problem is then solved persistently. We solve 
the persistent unary problem combining the technique by Dietz [5] 
to make a data structure fully persistent and the technique from 
[1] to solve the tree color problem. The technique of using a 
persistent dynamic one-dimensional data structure to solve a static 
two-dimensional problem is a standard technique [17]. What is 
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new in our technique is that we use the class hierarchy tree to 
denote the time (give the order on the versions) to get a fully 
persistent data structure. This gives a “branch-ing” notion for 
time, which is the same as what one has in a fully persistent data 
structure where it is called the version tree. This technique is 
different from the plane sweep technique where a plane-sweep is 
used to give a partially persistent data structure. A top-down tour 
of the tree corresponds to a plane-sweep in the partially persistent 
data structures. 

C. Related and Previous Work 
For the unary dispatching problem the best known bound is O(N 
+ m) space, O(loglog N ) query time and expected O(N + m) 
preprocessing time. The expectation in the preprocessing time 
is due to perfect hashing in a van Emde Boas predecessor data 
structure [15, 10]. 
For the d-ary dispatching, d ≥ 2, the result of Ferragina et al. [11] 
is a data structure using space O(m (t logm/logt)d−1) and query 
time O((logm/logt)d−1loglogN ), where t is a parameter 2 ≤ t ≤ 
m. For the case t = 2 they are able to improve the query time to 
O(logd−1m) using fractional cascading. They obtain their results 
by reducing the d-ary dispatching problem to a point-enclosure 
problem in d dimensions: Given a point q, check whether there is 
a smallest rectangle containing q. In the context of the geometric 
problem, Ferragina et al. also present applications to approximate 
dictionary matching. 
Eppstein and Muthukrishnan [9] looked at a similar problem 
called packet classification. Here there is a database of m filters 
available for preprocessing. A packet filter i in an IP network is 
a collection of d-dimensional ranges [li, ri]×· · ·× [li, ri], an action 
Ai, and a priority pi. An IP packet P is a d-dimensional vector  
of values [P1, . . . , Pd].  A filter i applies to packet P  if  Pj∈ [li , ri ] for j = 1, . . . , d.  
In this case the packet classification problem is essentially the same 
as the multiple dispatching problem. For the cased = 2 Eppstein and 
Muthukrishnan gave an algorithm using space O(m1+o(1)) and 
query time O(loglog m), or O(m1+ε) and query time O(1). They 
reduced the problem to a geometric problem, very similar to the one 
in [11]. To solve the problem they used the plane-sweep approach 
to turn the static two-dimensional rectangle query problem into a 
partial persistent dynamic one-dimensional problem. 

II. Preliminaries
In this section we give some basic concepts which are used 
throughout the paper. Definition 1. Let T be a rooted tree. The 
set of all nodes in T is denoted V (T). Let T(v) denote the sub-
tree of T rooted at a node v ∈ V(T). If w ∈ V (T(v)) then v is an 
ancestor of w, denoted v  w, and if w ∈ V (T(v))\{v} then v is a 
proper ancestor of w, denoted v  w. If v is a (proper) ancestor of 
w then w is a (proper) descendant of v. In the rest of the chapter 
all trees are rooted trees. 
Let C be a set of colors. A labeling l(v) of a node v ∈ V (T) is a 
subset of C, i.e., l(v) → C. A labeling l : V(T) → 2C of a treeT is 
a set of labelings for the nodes in T . Given a labeling of a tree 
T, the first ancestor of w ∈ T with color c is the node v ∈ T such 
that v ∈ w, c ∈ l(v), and no node on the path between v and w 
is labeled c. 

A. Persistent Data Structures 
Data structures that one encounters in traditional algorithmic 
settings are ephemeral, i.e., previous states are lost when an update 
is made. In a persistent data structure also previous versions of 
the data structure can be queried. The concept of persistent data 

structures was introduced by Driscoll et al. [8]. 
Definition (Persistence). A data structure is partially persistent 
if all previous versions remain available for queries but only the 
newest version can be modi-fied. A data structure is fully persistent 
if it allows both queries and updates of previous versions. An 
update may operate only on a single version at a time, that is, 
combining two or more versions of the data structure to form a 
new one is not allowed. 
In addition to its ephemeral arguments a persistent update or query 
takes as an argument the version of the data structure to which the 
query or update refers. Let the version graph be a directed graph 
where each node corresponds to a version and there is an edge 
from node v1 to a node v2 if and only if V2 was created by an 
update operation to V1. The version graph for a partially persistent  
data structure is a path, and for a fully persistent data structure 
it is a tree. 

B. Known Results 
Dietz [5] showed how to make any data structure fully persistent 
on a unit-cost RAM with logarithmic word size by an efficient 
implementation of the version tree. A data structure with worst case 
query time O(Q(n)) and update time O(F (n)) making worst case 
O(U (n)) memory modifications can be made fully persistent using 
O(Q(n) loglog n) worst case time per query and O(F (n) loglog n) 
expected amortized time per update using O(U(n) n) space. 

III. The Tree Color Problem 
Definition (Tree color problem). Let T be a rooted tree with n 
nodes, where we associate a set of colors with each node of T . 
The tree color problem is to maintain a data structure with the 
following operations: 
color(v, c): add c to v’s set of colors, 
i.e., l(v) ← l(v)  {c}, 
uncolor(v, c): remove c from v’s set of colors, 
i.e., l(v) ← l(v) \ {c}, 
firstcolor(v, c): find the first ancestor of v with color c (this may 
be v itself). 
The incremental version of this problem does not support uncolor, 
the decremental problem does not support color, and the fully 
dynamic problem supports both update operations. 

A. Known Results
Alstrup et al. [1] showed how to solve the tree color problem on a 
unit cost RAM with logarithmic word size in expected update time 
O(loglog n) for both color and uncolor, and query time O(logn/
loglogn), using linear space and preprocessing time. The expected 
update time is due to hashing. Thus the expectation can be removed 
at the cost of using more space. We need worst case time when 
we make the data structure persistent because data structures with 
amortized/expected time may perform poorly when made fully 
persistent, since expensive operations might be performed many 
times. 
Querying and updating a version tree of a fully persistent data 
structure is an incremental version of the tree color problem. Dietz 
[5] showed how to solve the incremental tree color problem in 
O(loglog n) amortized time per operation using linear space, when 
the nodes are colored top-down and each node has at most one 
color. 
Definition 4. We need a data structure to support insert and 
predecessor queries on a set of integers from {1..n} . This can be 
solved in worst case in O(loglogn) time per operation on a RAM 
uing the data structure of van Emde boas [18] (VEB). We show 
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how to modify this data structure such that it uses only O(1) 
memory modifications per update.

IV. The Bridge Color Problem 
The binary dispatching problem (d = 2) can be formulated as 
the following tree problem, which we call the bridge color 
problem. 
Definition 5 (Bridge Color Problem). Let T1 and T2 be two rooted 
trees. Between T1 and T2 there are a number of edges—called 
bridges—of different colors. Let C be the set of colors. A bridge 
is a triple (c, v1, v2) ∈ C × V (T1) × V (T2) and is 

Fig. 1: An Example of the Bridge Color Problem. The solid lines 
are tree edges and the dashed and dotted lines are bridges of 
color c and c′, respectively. firstcolorbridge(c,v,u) returns b3. 
firstcolorbridge(c′,r,s) returns ambiguity since neither b1 or b2 
is closer than the other. denoted by c(v1, v2). The bridge color 
problem is to construct a data structure which supports the query 
firstcolorbridge(c,v1,v2). 
firstcolorbridge(c, v1, v2) Find a bridge c(w1, w2) such that: 
1. w1  v1 and w2  v2. 
2. There is no other bridge c(w1, w2) such that w1  w1  v1 or 
w2  w2  v2. 
If there is no bridge satisfying the first condition return NIL. If 
there is a bridge satisfying the first condition but not the second 
then return ”ambi-guity”. 
See fig. 1 for an example of the bridge color problem. The binary 
dispatching problem can be reduced to the bridge color problem 
the following way. Let T1 and T2 be copies of the tree T in the 
binary dispatching problem. For every method s(v1, v2) ∈ M make 
a bridge of color s between v1 ∈ V (T1) and v2 ∈ V (T2). 
The problem is now to construct a data structure that supports 
firstcolorbridge. 
The objective of the remaining of this paper is to show the 
following theorem: 
Theorem 1. Using expected O(m loglog m) time for preprocessing 
and O(m) space, the query firstcolorbridge can be supported in 
worst case time O(log m) per operation, where m is the number 
of bridges. 

V. A Data Structure for the Bridge Color Problem 
Let B be a set of bridges (|B| = m). As mentioned in the introduction 
we can assume that the number of nodes in the trees involved 
in the bridge color problem is O(m), i.e., |V (T1)| + |V (T2)| = 
O(m). In this section we present a data structure that supports 
firstcolorbridge in O(log m) time per query using O(m) space for 
the bridge color problem. 
We first reduce the static bridge color problem to the dynamic tree 
color problem. For each node v ∈ V (T1) we define the labeling lv of 
T2 as follows. The labeling of a node w ∈ V (T2) contains color c if w 
is the endpoint of a bridge of color c with the other endpoint among 
ancestors of v. Formally, c ∈ lv (w) if and only if there exists a node 
u  v such that c(u, w) ∈ B. In addition to each labeling lv , we need  
to keep the following extra information stored in a sparse array 

H(v): For each pair (w, c) ∈ V (T2) × C, where lv(w) contains 
color c, we keep the first ancestor v′ of v from which there is a 
bridge c(v′, w) ∈ B. Note that this set is sparse, i.e., we can use 
a sparse array to store it. Similar define the symmetric labelings 
for T1. See fig. 2. for an example. 
For each labeling lv of T2, where v ∈ V (T1), we will construct 
a data structure for the static tree color problem. The query 
firstcolorbridge(c, u, w) can then be answered by the following 
queries in this data structure. 
First perform the query firstcolor(w, c) in the data structure for 
the labeling lu of the tree T2. If this query reports NIL there is 
no bridge to report, and we return NIL. Otherwise let w′ be the 
reported node. We make a lookup in H(u) to determine the bridge 
b such that b = c(u′, w′) ∈ B. By definition b is the bridge over 
(u, w′) with minimal distance between w and w′. However, it is 
possible that there is a bridge (u′′, w′′) over (u, w) where dist(u,u”) 
< dist(u,u’). By a symmetric computation with the data structure 
for the labeling l(w) of T1 we can detect this. If so we return 
“ambiguity”. Otherwise we return the unique first bridge b. See 
fig. 2 for an example. 

Fig. 2: Example of labeling. The labeling for v ∈ V (T1), lv : lv (r) 
= {c1, c2}, lv (s) = {c3}, lv (t) = {c1}, lv(u) = {c2}. The labeling lw 
for w ∈ V (T1) is the same as lv except that lw(u) is empty.

Explicit representation of the tree color data structures for each of 
the labelings lv for all nodes v in T1 and T2 would take up space 
Ω(m2). Fortunately, the data structures overlap a lot: Let v, w ∈ 
V (T1), u ∈V (T2), and let v  w. Then lv (u)  lw (u). We take 
advantage of this in a simple way. We make a fully persistent 
version of the dynamic tree color data structure. The idea is that 
the above set of O(m) tree color data structures corresponds to a 
persistent version, each created by one of O(m) updates in total. 
Formally, suppose we have generated the data structure for the 
labeling lv, for v in T1. Let w be the child of node v in T1. We 
construct the data structure for the labeling lw by updating the 
persistent structure for lv by inserting the color corresponding 
to all bridges with endpoint w (including updating H(v)). Since 
the data structure is fully persistent, we can repeat this for each 
child of v, and hence obtain data structures for all the labelings for 
children of v. In other words, we can form all the data structures 
for the labeling lv for nodes v ∈ V (T1), by updates in the persistent 
structures according to a top-down traversal of T1. Another way 
to see this, is that T1 is denoting the time (giving the order of the 
versions). That is, the version tree has the same structure as T1. 
Similarly, we construct the labelings for T1 by a traversal of T2. 
We conclude with the following lemma: 
Lemma 1. A static data structure for the bridge color problem can 
be constructed by O(m) updates to a fully persistent version of 
the dynamic tree color problem. 
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A. Reducing the Number of Memory Modifications in the 
Tree Color Problem
Alstrup et al. [1] gives the following upper bounds for the tree 
color problem for a tree of size m. Expected O(loglog m) update 
time for both color and uncolor, and query time O(log m/loglog 
m), with linear space and preprocessing time. 
For our purposes we need a slightly stronger result, i.e., updates that 
only make worst case O(1) memory modifications. By inspection 
of the dynamic tree color algorithm, the bottle-neck in order to 
achieve this, is the use of the van Emde Boas predecessor data 
structure [18] (VEB). Using a standard technique by Dietz and 
Raman [6] to implement a fast predecessor structure we get the 
fol-lowing result. 
Theorem 2. Insert and predecessor queries on a set of integers 
from {1, . . . , n} can be performed in O(loglog n) worst case 
time per operation using worst case O(1) memory modifications 
per update. 
To prove the theorem we first show an amortized result1. The 
elements in our predecessor data structure is grouped into buckets 
S1, . . . , Sk, where we maintain the following invariants: 
(1) max Si < min Si+1		  for i = 1, . . . k − 1, and
(2)1/2 log n < |Si| ≤ 2 log n	for all i.
We have k ∈ O(n/ log n). Each Si is represented by a balanced 
search tree with O(1) worst case update time once the position of 
the inserted or deleted element is known and query time O(log 
m), where m is the number of nodes in the tree [12-13]. This gives 
us update time O(loglog n) in a bucket, but only O(1) memory 
modifications per update. The minimum element si of each bucket 
Si is stored in a VEB. 
When a new element x is inserted it is placed in the bucket Si 
such that si < x< si+1,or in S1 if no such bucket exists. Finding the 
correct bucket is done by a predecessor query in the VEB. This 
takes O(log logn) time. Inserting the element in the bucket also 
takes O(log logn) time, but only O(1) memory modifications.  
When a bucket Si becomes to large it is split into two buckets 
of half size. This causes a new element to be inserted into the 
VEB and the binary trees for the two new buckets have to be 
build. An insertion into the VEB takes O(loglog n) time and uses 
the same number of memory modifications. Building the binary 
search trees uses O(log n) time and the same number of memory 
modifications. When a bucket is split there must have been at least 
log n insertions into this bucket since it last was involved in a 
split. That is, splitting and inserting uses O(1) amortized memory 
modifications per insertion. 
Lemma 2. Insert and predecessor queries on a set of integers from 
{1, . . ., n} can be performed in O(loglogn) worst case time for 
predecessor and O(log logn) amortized time for insert using O(1) 
amortized number of memory modifications per update. 
We can remove the amortization by the following technique by 
Raman [100] called thinning at the cost of making the bucket 
sizes Θ(log2n). 
Let α > 0 be a sufficiently small constant. Define the criticality 
of a bucket to be:
ρ(b) = (1/α log n) max{0, size(b) − 1.8 log2 n}.1
A bucket b is called critical if ρ(b) > 0. We want to ensure that 
size(b) ≤ 2 log2n. To maintain the size of the buckets every α log 
n updates take the most critical bucket (if there is any) and move 
logn elements to a newly created empty adjacent bucket. A bucket 
rebalancing uses O(log n) memory modifications and we can  
thus perform it with O(1) memory modifications per update spread 
over no more than α log n updates. 

We now show that the buckets never get too big. The criticality of 
all buckets can only increase by 1 between bucket rebalancings. 
We see that the criticality of the bucket being rebalanced is 
decreased, and no other bucket has its criticality increased by 
the rebalancing operations. We make use of the following lemma 
due to Raman: 
Lemma 3 (Raman ). Let x1, . . ., xn be real-valued variables, all 
initially zero. Repeatedly do the following:
(1) Choose n non-negative real numbers a1, . . . , an such that 
	 ∑n i=1 ai = 1, and set 
	 xi ← xi + ai for 1 ≤ i ≤ n.
 (2) Choose an xi such that xi = maxj {xj }, and set xi ← max{xi − c, 
0} for some constant c ≥ 1. 
Then each xi will always be less than ln (n + 1), even when c = 
1. 
Apply the lemma as follows: Let the variables of Lemma 
3 be the criti-calities of the buckets. The reals ai are the 
increases in the criticalities between rebalancings and c 
= 1/α. We see that if α ≤ 1 the criticality of a bucket will  
never exceed ln n + 1 = O(log n). Thus for sufficiently small α 
the size of the buckets will never exceed 2 log2 n. This completes 
the proof of Theorem 2.
We need worst case update time for color in the tree color problem 
in order to make it persistent. The expected update time is due to 
hashing, and can be removed at the cost of using more space. We 
now use Theorem 2 to get the following lemma. 
Lemma 4. Using linear time for preprocessing, we can maintain a 
tree with complexity O(loglog m) for color and complexity O(log 
m/loglog m) for firstcolor, using O(1) memory modifications per 
update, where m is the number of nodes in the tree. 

B. Making the Data Structure Persistent 
Using Dietz’ method [5] to make a data structure fully persistent 
on the data structure from Lemma 4, we can construct a fully 
persistent version of the tree color data structure.
Taking advantage of the fact that the structure of the version tree 
is known from the beginning, we can get faster preprocessing 
time for our bridge color data structure. 
Since the structure of the version tree is known from the beginning 
we can construct the tree color data structure for the version tree, by 
first to running through the whole version tree in an Euler tour, and 
remembering which updates are made in which node. Then we can 
construct the tree color data structure for the version tree using the 
data structure for the static tree color problem by Muthukrishnan 
and Muller [15]. This uses expected linear preprocessing time 
and linear space using worst-case O(loglog m) time per query. 
As mentioned earlier the expectation in the preprocessing time 
can be removed. 
Another possibility is to use a modified version of Dietz’ method to 
make a data structure fully persistent. Recall that this method gives 
an expected amortized slowdown of O(loglog m). The amortization 
comes from the problem of maintaining order in a list. Since we 
know the structure of the version tree from the beginning we can 
get rid of this amortization. This gives a significant simplification 
of the construction of our bridge color data structure. This data 
structure uses expected O(loglog m) time per update, and the 
preprocessing time for our bridge color problem is thus a factor of 
O(loglog m) bigger than in the approach using a static tree color 
data structure for the version tree. 
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