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Abstract
Customer liking queries are very important in spatial databases. 
We propose a definition of a spatial database system as a database 
system that offers spatial data types in its data model and query 
language and supports spatial data types in its implementation, 
providing at least spatial indexing and spatial join methods. Spatial 
database systems offer the underlying database technology for 
geographic information systems and other applications. We 
survey data modeling, querying, data structures and algorithms, 
and system architecture for such systems. The emphasis is on 
describing known technology in a coherent manner rather than 
on listing open problems.. The featured score of a given object 
is derived from the quality of features (e.g., location and nearby 
features) in its spatial neighborhood 
This neighborhood concept can be defined by different functions 
by the user. It can be an explicit circular region within a given 
distance from the flat. Another sensitive definition is to assign 
higher rates to the features based on their proximity to the land. 
In this paper, we formally define spatial preference queries 
and propose suitable dynamic index techniques and searching 
algorithms for them. We extend results with dynamic index 
structure in order to accommodate time - variant changes in the 
spatial data. In my current work is the top-k spatial preference 
query on road network, in which the distance between object and 
road is defined by their shortest path distance. By separating this 
query as a subset of dynamic skyline queries N2S2 algorithm is 
provided for computing it. This algorithm has good performance 
compared with the general branch and bound algorithm for skyline 
queries.

Keywords
User preference queries, nearest neighbor, skyline queries, spatial 
databases.

I. Introduction
With the popularization of geographic information, there has been 
an increasing number of Webs information systems specialized 
in providing interesting results through location-based queries. 
However, most of the existing systems are limited to plain spatial 
queries that return the objects present in a given region of the space. 
In this paper, we study a more sophisticated query that returns the 
best spatial objects based on the features (facilities) in their spatial 
neighborhood. Given a set of data objects of interest, a top-k spatial 
preference query returns a ranked set of the k best data objects. 
The score of a data object is defined based on the non-spatial 
score (quality) of feature objects in its spatial neighborhood. On 
the other hand, the score of a feature object does not depend on 
its spatial location, but on the quality of the feature object.
In many situations for decision making, users need select one or 
more data from database in accordance with their interest. The 
selected data must meet their desired constraints. A user wants 
to select a hotel with less cost and distance to beach. User hasn’t 
accurate asked (for example cost of hotel below 100$ and distance 
to beach less than 1Km is accurate asked) but wants to find a set 
of data that are closer to their own interests. Such constraints 

called soft constraints and queries about these problems called user 
preference queries other features (e.g., restaurants, cafes, hospital, 
market, etc.) in the spatial neighborhoods of the flat (defined by 
a spatial range around it). Quality may be subjective and query-
parametric. the locations of an object data set D (hotels) in white, 
and two feature data sets: the set F1 (restaurants) in gray, and the 
set F2 (cafes) in black. Quality points are labelled by excellence 
values that can be obtained from rating providers. For the ease 
of argument, the qualities are normalized to values in [0,1]. The 
score T (p) of a hotel p is defined in terms of: 
(a) Range score
(b) Influence score
(c) Nearest neighbor

Fig. 1:

User preference queries are very important in spatial databases. 
Spatial data in addition to no spatial data can be stored in these 
databases. With the help of these queries, user can find best places 
in database according to their interest
Related works in this field are in based on top-k queries. In top-k 
queries setting a weight for each attribute and a scoring function 
for aggregating attributes are hard for user. Indeed user is more 
willing to ask for the skyline first in order to get the “big picture” 
and then apply a top-k query to get more specific results. So the use 
of skyline query with considering the distances of points to their 
nearest neighbors is subject that less attention has been on it.
Distance of the point to its nearest neighbor is a dynamic attribute 
for that point. Dynamic attributes are not directly stored in database 
but according to data from database can be calculated. Existence 
algorithms for respond skyline queries such as branch and bound 
algorithm don’t have good performance for dynamic skyline 
queries and in based on type of dynamic attributes. In this paper a 
new type of dynamic skyline query called spatial nearest neighbor 
skyline query is introduced. In these queries, user has some set of 
query points. For each point in database, attributes are its distances 
to nearest neighbors from each set of query points. All points that 
there is a point better than them according to all attributes are 
deleted and the rest are returned as the answer.
This query is the subset of dynamic skyline queries. By separating 
it we are trying to provide a more efficient algorithm for computing 
it. This algorithm that called N2S2 is in based on branch and bound 
algorithm and such as branch and bound algorithm supposes there 
is R tree index on data but this solution can be extended to all kind 
of data partitioning methods on spatial databases.
In this algorithm by considering the density of the query points 
in high levels of the index instead of accurate distance to nearest 
neighbors, a better view with less cost is obtained about nodes 
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of tree may be more promising. Also with storing nodes that are 
used to find nearest neighbors of parent nodes and using of them 
for finding nearest neighbor of lower level nodes of tree, many 
extra fetch of nodes will be avoided.

II. Problem Identification
A Spatial partiality query ranks lands based on the qualities of 
features in their spatial zone. Feature refers to a class of objects in 
a spatial plan such as specific conveniences or services. A customer 
may want to rank the contents of this database with respect to the 
quality of their locations, quantified by aggregating non-spatial 
characteristics of other features in the Spatial neighborhood of the 
flat. Quality may be subjective and query-parametric.
 For example, using a landed property agency database of flats 
for Sale, a customer may want to rank the flats with respect to the 
appropriateness of their location, top-10 flats with the largest sizes 
and lowest prices, defined after aggregating the qualities of other 
features (e.g., restaurants, bus stop, hospital, market, school, etc.) 
within their spatial neighborhoods. In spatial databases, ranking 
is often associated to nearest neighbor (NN) recovery. Given a 
query location, we are interested in retrieving the set of nearest 
objects to it that qualify a condition (e.g., restaurants). Assuming 
that the set of interesting objects is dynamic indexed by an R-tree, 
we can apply distance score bounds and traverse the index in a 
branch-and-bound approach to obtain the answer.
Therefore, we propose extend results with dynamic index structure 
in order to accommodate time-variant changes in the spatial data 
using searching algorithms. Spatial ranking, which orders the 
objects based on their distance and score from a reference feature, 
and second Non-spatial ranking, which orders the objects by an 
combined method on their nonspatial values.
This paper, we propose alternative techniques that aim at 
minimizing the I/O accesses to the object and feature data sets, 
while being also computationally efficient. Our techniques apply 
on spatial-separation access functions and work out score bounds 
for the objects indexed by them, which are used to effectively trim 
the try to find space. Specifically, we contribute the Branchland-
Bound (BB) algorithm and the Feature Join (FJ) algorithm for 
efficiently processing the top-k spatial preference query.
A type of spatial user preference queries is presented in it that 
ranks objects based on the qualities of features in their spatial 
neighborhood and retrieves the K objects in set with the highest 
ranks. In fact in [6] user has some sets of query points. Each 
query point in based on its quality has a score between 0 and 1. 
For each object in database scores of nearest neighbors from each 
set of query points are aggregated with a function such as sum 
and object is ranked in based on result of this function. K points 
that have highest rank are retrieved as query results.
So for example an object that its nearest neighbor is far from it 
may have high rank. This method use top-k queries so user should 
present an appropriate ranking function.
In which, in addition to the nearest neighbor, the scores of the 
higher level neighbors are considered for ranking objects with 
the condition that the score of i’th nearest neighbor is divided 
into 2t . The problem with this method is that it doesn’t consider 
concept of distance exactly and so for example it is not important 
that how much the distance of an object with its nearest neighbor 
is or how much the distance of the first and the second nearest 
neighbors is.

III. KNN Query Processing

A. Nearest Neighbor Query
Given: a point p, a set of points D and distance function d• 
Find: q in D such that for any point q’ in D, d(p,q) ≤ d(p, • 
q’)

Fig. 2: Linear search – the naïve method
To compute the distance from p to every point in D 

Using spatial indexes – minimize the data  accessed• 
Search with expanding range• 
Start with a circle centered at p, and increase the radius • 

B. MBR
D-dimensional rectangle, which is the minimal   rectangle that 
fully encloses an object or a set of objects
MBR Face Property:
Every face of the MBR contains at least one point of some object 
in the database.

Fig. 3:

1. MinDist 1:
A lower bound distance for any point in R to p
• if p is inside R, then MINDIST=0
• if p is outside of R, MINDIST is the distance of p to
the closest point of R (one point of the perimeter)

Fig. 4:

2. MinMaxDist 2
An upper bound of distance from p to R
•for each dimension, find the closest face
•compute the distance to the furthest point on this face
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•take the minimum of all these (d) distances

Fig. 5: 

Pruning Strategies:
1. (downward pruning) An MBR R is discarded if there exists 
another R’ such that MINDIST(p, R)>MINMAXDIST(p, R’)
  Example 1:
           Downward pruning:
An MBR R is discarded if there exists another R’
  s.t. MINDIST(p,R)>MINMAXDIST(p,R’)

Fig. 6:

2. (downward pruning) An object o is discarded if there exists an 
R such that d(p, o) > MINMAXDIST(p, R)
           Example 2:
Downward pruning:
                 An object o is discarded if there exists an R
                s.t. the Actual-Dist(p,o) > MINMAXDIST(p,R)

Fig. 7:

3. (upward pruning) An MBR R is discarded if a point q is found 
such that MINDIST(p, R)> d(p, o)
             Example 3
   Upward pruning:
                   An MBR R is discarded if an object o is found
                  s.t. the MINDIST(p,R) > Actual-Dist(p,o)

Fig. 8:

For tree traversal:
     MINDIST is an optimistic distance, whereas
    MINMAXDIST is a pessimistic one.

Fig. 9:

IV. (Skyline Queries)&(Branch and Bound 
Algorithm(BBS)):

A. Skyline Queries
Find a hotel in gold coast that is:• 
cheap and close to the beach!• 
Which are the candidate interesting hotels?!• 

Fig. 10: Finding a Hotel… 26

B. Skyline query: retrieve all points that are not     
dominated Skyline Query Applications 

Find best NBA players: (#points, #rebounds), or any other • 
subset of the 17 dimensions.
 Find best laptops: (price, screen size, weight, battery, memory • 
size, disk size, CPU speed, warranty…)
Any table in a RDBMS has a list of records with multiple • 
attributes, so ……
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Fig. 11:

C. Skyline Query Processing
The naïve way_O(n2) complexity!

Fig. 12:

Skyline Query Processing

Fig. 13:

A slightly better way: divide-and-conquer• 
The space is divided into several sub-spaces• 
Skyline points for each sub-space is computed• 
Those skyline points in sub-spaces are merged• 
Efficient if the entire dataset fits in memory!• 

Skyline via NN Query
1. Find nearest neighbor point and add to skyline
2. Divide the space by the nearest neighbor point

Prune dominance region• 
Add sub-spaces into a “to-do” list• 

3. Compute recursively until empty space.

Fig. 14:

V. Branch-and-Bound Approach:

A. Branch & Bound Skyline (BBS) 
uses mindist(MBR) = the L1 distance between   its lower-left 
corner and the origin.
    

Fig. 15: Branched and Bound Skyline (BBS):

• Assume all points are indexed in an R-tree.
• Top-down Approach
• mindist = the L1 distance between its lowerleft
corner and the origin.

Fig. 16: F(x,y)= x+y

B. BBS Skyline Algorithm
Let heap H = Ф, and skyline result S = Ф.
Insert all entries of the root R in the heap
While heap not empty
Remove top entry e
If e is dominated by some point in S, discard e
    else
         If e is an intermediate entry
         For each child ei of e
If ei is not dominated by some point in S, insert ei into H
Else // e is a data point
Insert ei into S

VI. N2S2 Algorithm

A. Problem with BBS Algorithm
When a node is removed from priority queue, its nearest neighbors 
from each set of query points should be calculated and in based on 
it decided for that node. Suppose there are separate R tree indexes 
on each sets of query points. For finding nearest neighbor (from 
a set of query points) for each child of a node, search should be 
started from the root of the query points R-tree index, almost 
the same route that went for finding nearest neighbor of parent 
node. So fetching a lot of nodes for finding nearest neighbor are 
repeated. Therefore by storing the nodes of query points[10] R tree 
that are used to find nearest neighbor of parent node and continue 
the search from them, we can prevent many of the additional 
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fetches.
On the other hand for higher level and close to the root nodes of 
data points R tree, don’t need the exact distance from its nearest 
neighbor but only need an overview of the density of query 
points around the MBR1 of the node to recognize the priority 
of it. Therefore the search for finding nearest neighbor need not 
continue to leaves of query points R tree but nearest MBRs at 
levels above the leaves can be found and the distances to these 
MBRs is considered. Therefore many additional fetches of nodes 
can be avoided.
Before presenting algorithm, appropriate metrics for calculating 
the distance between two MBRs are needed. There are different 
metrics for the distance of two MBRs. in this paper two metrics 
that are introduced in [15] will be used. The first is MinMindist 
that is the minimum distance between any points in two MBRs and 
the other is MaxMaxdist that is the maximum distance between 
any points in two MBRs. in figure 1 this two metrics are shown 
for two MBRs. this two metrics are used for pruning R tree in 
N2S2 algorithm Distance between two MBRs 

Fig. 17:

N2S2 Algorithm is in based on BBS Algorithm in which both 
problems that discussed in BBS algorithm with spatial nearest 
neighbor skyline queries are solved. The search is started from the 
root of the data points R tree. For each node of the data points R 
tree that is fetched, a typical data structure like the data structure 
that presented in [16] is created that this node is its owner. If there 
are m sets of query points, this data structure has m lists. These 
lists are used for saving nodes of query points R tree used for 
finding nearest neighbor of the owner. So the search for nearest 
neighbor doesn’t need to start from the root node of the query 
points R tree but can continue from saving nodes in lists of parent 
data structure. For each list in data structure of a node minimum 
of MinMindist and minimum of MaxMaxdist between MBR of 
owner node and MBRs of the nodes in list are stored.
Procedure of algorithm is that at first a new data structure is created 
that the root of data points R tree is its owner. In each m lists of 
this data structure, the root of each query points R tree is inserted. 
[12], Same as BBS algorithm, a priority queue is used for storing 
and retrieving these data structures. After creating the root data 
structure, it is inserted to priority queue. The priority of each 
data structure determined with sum of minimums of MinMindists 
for all lists of it. The node that this value is lower for it is more 
promising. At each stage the data structure of the more promising 
node is removed from the priority queue and if it isn’t dominated 
by skyline points have been found so far, it will be examined.
If the owner of this data structure is an intermediate node, a new 
data structure is created for each child of owner. For filling lists 
of child data structure, the nodes of corresponding lists of parent 
data structure are examined. If those nodes are leaves, themselves 
and if they are intermediate nodes, their children are inserted in 
the list of new data structure. Therefore by going down one level 
in data points R tree, we are going down one level in query points 
R trees too.

When a node is inserted in a list of data structure of child node the 
values of minimum of MinMindist and minimum of MaxMaxdist 
are updated for that list. When a list was filled with examination of 
all nodes in corresponding list of parent data structure, all nodes 
in the list are examined again and each node that isn’t promising 
for finding nearest neighbor, is pruned. In the other words all 
nodes in list that minimum distance between their MBRs and 
owner MBR is greater than minimum of MaxMaxdist for that 
list, are removed from list. Because there is another node in the 
list that maximum distance between its MBR and owner MBR is 
less than minimum distance between this node and owner. So it 
is impossible that this node has nearest neighbor.
If the owner of new data structure is a leaf node, the exact distance 
of that node and its nearest neighbor from each set of query points 
should be calculated. So the procedure of filling lists with children 
of further nodes in lists and pruning none promising nodes should 
be continued until all nodes in lists are leaves and exact distances 
to nearest neighbors from each query sets are obtained.
This pseudo code has five functions. The INSERT function inserts 
a node into one of lists of a DS and updates minminmindist and 
minmaxmaxdist values corresponding to this list of DS. The PRI 
function calculates the priority of a DS. This function calculates 
the sum of all minminmindist and minmaxmaxdist values 
corresponding to all lists of the DS and returns this value. If the 
value of this function is less for a DS, it is more promising.

A. NN-search Algorithm
        Initialize 
The nearest distance as infinite distance
       Traverse
              The tree depth-first starting from the root. 
                 At each
                  Index node; sort all MBRs using an ordering                     
    (e.g., MINDIST) and put them in an Active   Branch List 
(ABL).
             Apply
       Pruning : rules 1 and 2 to ABL (downward Pruning)
If Leaf node, compute actual distances, compare with    the best 
NN so far, update if necessary.
        At the return from the recursion, use 
Pruning: rule 3   (upward pruning)
  When the ABL is empty, the NN search returns.
1. K-NN search
Keep a sorted buffer of at most k current nearest  neighbors
Pruning is done using the k-th neighbor in buffer
2. KNN in Road Networks
Distance computing in road networks is costly
 Shortest path: Dijkstra algorithm and A* algorithm
Optimization focus is different – not only the number of points to 
be accessed, but also the network data to be accessed
Euclidean distance for approximation
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Fig. 2: N2S2 Algorithm

The DOMINATE function gives two DS as input and examine 
if first DS dominate another or not. A DS dominate another DS 
if for all lists in this DS the value of mindist is less than or equal 
and for at least one list this value is less than the corresponding 
value of another list.

The RECONFIG function gives a DS and examines all nodes in 
one of its lists and removes all nodes from the list that are not 
promising for finding nearest neighbor of the owner. Each node 
that the minimum distance between it and the owner is greater 
than minmax maxdist of that list is not promising and removes 
from the list.

VII. Conclusion 
This paper a new kind of user preference queries in spatial data 
bases is introduced that called spatial nearest neighbor skyline 
queries. This query is very practical in many fields such as 
service recommendation systems and investment planning. With 
separating it as a subset of dynamic skyline query, the N2S2 
algorithm is presented for solving this kind of query with better 
performance. The number of IO in this algorithm is much less 
than BBS algorithm for this kind of queries. In future works we 
want to extend this kind of query and consider the quality of query 
points in addition to their distance from data point.
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